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Abstract—Advection is a general transport mechanism
whereby substances are conveyed by bulk flows. In
network-organized systems, advective processes are de-
scribed by using the advection matrix. Eigenvectors of the
advection matrix tend to localize on a subset of network
nodes which have similar flow intensities. Although this lo-
calization property can be observed numerically in a wide
range of networks, no theoretical explanation has been pro-
posed. In this paper, we establish a theoretical approach to
explain the localization property on the basis of the pertur-
bation approximation of the advection matrix. We demon-
strate the ability of the proposed theory to predict the local-
izing pattern of eigenvectors for several classes of random
networks.

1. Introduction

Advection is a general transport mechanism whereby
substances are passively conveyed by bulk flows. Ad-
vective processes are ubiquitously found in nature and
have been extensively studied in a wide range of research
fields [1, 2, 3]. One of the central topics of this field of re-
search is the collective dynamics of particles advected by
turbulent flows. The statistical properties of the advection
of passive particles have also attracted much attention.

Advective dynamics have mainly been studied for con-
tinuous media; however, they can also be considered in
network-organized systems. In an advection network, sub-
stances occupy each node and are transported by flows
along connecting links. Such a system may arise when we
consider a network of pipelines through which bulk flows
convey oil or pollutant to distribution branches or final des-
tinations. Another such example would be a transportation
network, in which traffic flows are established by trains,
ships, or aircraft on regularly scheduled services between
rail stations, ocean harbors, or airports. To describe the
transport dynamics in these systems, we recently proposed
a mathematical formulation of the advection equation in
network-organized systems [4].

In the network advection equation, the time evolution of
the concentration of particles at each node is described by
the advection matrix, which has the remarkable property
of having its eigenvectors localized on a subset of network
nodes. Namely, each eigenvector tends to have relatively
large values on the subset. This localization property plays

a decisive role in mixing dynamics of passive particles. In
advection networks, particle concentrations always equili-
brate to a uniform distribution. The equilibration firstly oc-
curs in the subset of nodes through which strong flows are
passing and, gradually spreads to the entire network. Such
dynamics can be explained by means of the localizing ad-
vection eigenvectors [4].

Although the localization property can be observed in a
wide range of networks, the property has only been shown
to exist numerically. Thus, no theoretical evidence of its
presence has been so far proposed. In this paper, we pro-
vide a theoretical explanation of the localization property
of the advection eigenvectors. Based on perturbation the-
ory, a standard approximation technique in quantum me-
chanics, the localization of eigenvectors is qualitatively
predicted. We apply the developed theory to several classes
of advection networks for illustration.

2. Localization of advection eigenvectors

2.1. Advection matrix

Let us briefly review the derivation of the advection ma-
trix. We consider a network of size N, which is formed by
discrete nodes labeled by i = 1,2,---, N and connected by
directed links. Flows are passing over the links to convey
substances. The network architecture is determined by the
adjacency matrix A = {A;;} of which the value of the el-
ement is A;; = 1, if there is a link from node j to node i;
otherwise its value is A;; = 0. We consider that no self-
loops exist in the network so that A; = 0 holds for any i.
The transportation capacity of each link is specified by the
weight matrix W = {W;;}.

We employ a stochastic description for advective trans-
port in the network. If a node has multiple outgoing links,
a single particle on the node will be transported over one
of them with a certain probability. Stochastic transport of
this nature in network-organized systems can be described
as a Markov process, in which the time evolution of the
concentrations ; of the particles at node i is given by

N

% - Z (ViinjHj - VjiAfiei)’ .
=

where v;; is the transition probability of a single particle
from node j to node i. We assume that v;; is proportional
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to the intensity J;; of the flow along the respective link,
vij = vJij, where v is a normalization constant. It is also
assumed that the flows are incompressible such that the to-
tal incoming flow is equal to the total outgoing flow in each
node. Thus, the condition

N N
Xi = Z JijAij = Z JjiAjis
j=1 j=1

should hold at any node i, where we introduce the variable
X; representing the total passing flow in node i for conve-
nience. The flow X; is divided among the outgoing links
according to their relative transportation capacities W;;, so
that we have

@

WiiAji

Ji= =i
! N WAy,

Xi. (3
We consider only those networks in which each node has
at least one outgoing connection such that Zfi WA # 0
and J; does not diverge. By substituting the expression (3)
into Eq. (2), we have equations

6,'j) Xj = 0,

of which the flows X; at each node can be found as solu-
tions. We normalize {X;} so that the total flow in the net-
work is fixed at ¥, X; = 1. For convenience, the node
indices {i} are enumerated according to the flows X;, so that

WijAij

N
j=1 (25\,1 Wi

“

X1 >2X, 2> Xy, 5)
holds. Once the total passing flows X; on the nodes are
determined, the flow intensities J;; for the links can be ob-
tained by using Eq. (3).

The advection matrix {M;;} is defined by M;; = J;;A;; -
Zﬁ | JiiAi0;j, such that the time evolution in Eq. (1) can be

rewritten as
N

(6)

By rescaling the time as vt — ¢, we can set v = 1 without
loss of generality.

2.2. Advection eigenvectors

The advection eigenvector @ and the corresponding
eigenvalue A@ are defined by the equation

N
DMt = Ay, €
j=1

J

for @ = 1,---,N. It can easily be checked that the advec-
tion matrix is negative semidefinite and, therefore, the real
parts of all eigenvalues are nonpositive, ReA®” < 0. For
convenience, the eigenmode index « is sorted in increasing
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Figure 1: Localization of advection eigenvectors. (a) Three
advection eigenvectors for @ = 50 (blue solid curve), @ =
250 (green dotted curve), and a = 450 (red chained curve)
in a scale-free network. Magnitudes |z,0§“)| are plotted and
large-deviation nodes where |w§")| > (.1 are marked by dots
(@ = 50), crosses (@ = 250), and triangles (@ = 450).
(b-e) Density plot of the large-deviation points for (b,c)
Barabasi-Albert, and (d,e) Erdos-Rényi networks. Trans-
portation capacity W;; is either (b,d) equal for all links, i.e.,
W;; = 1, or (c,e) randomly drawn from the uniform dis-
tribution 0 < W;; < 1. The network size and mean de-
gree are fixed at N = 500 and (k) = 20, respectively, for
all networks. Counting intervals for these density maps
are (b,c) A[ln(-ReA®)] = A[ln(X;)] = 0.1 and (d,e)
Alln(=ReA@)] = A[In(X;)] = 0.08.

order of the real part of the eigenvalues such that we have
inequalities

ReA(l) < ReA(z) <...< ReA(N). (8)

First, we show in Fig. 1 the localization of the advec-
tion eigenvectors. Note that the advection matrix is gen-
erally asymmetric, such that the eigenvector components
may have complex values and these values are displayed
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by using the magnitudes |1,//l(,“)| of each component.

Three different eigenvectors of a scale-free network are
displayed in Fig. 1 (a). This scale-free network was gen-
erated by the Barabdsi-Albert preferential attachment algo-
rithm [6]. The transport capacities of all links are set to
W;; = 1. It can be seen in the figure that all three eigen-
vectors localize in the network. Moreover, the eigenvec-
tor with smaller « is localized on the subset of nodes with
smaller i (¢ = 50), whereas the eigenvector with larger «
is localized at nodes with larger i (¢ = 450). This indicates
the correlation between the variable ReA® and the flow
intensity X; at the localized node because we sort indices «
and i as Egs. (5) and (8).

It is shown in Fig. 1 (b) that the localization holds for
all eigenvectors. The density plot has been constructed as
follows: All nodes were divided into groups according to
their flow intensities X;. Each group contained the nodes
with X; within the window of width 0.1 for In(X;). The
variable In(—ReA@) was also divided into equal intervals
of window width 0.1. In each two-dimensional interval,
the number of large-deviation nodes specified by |d/§a)| >
0.1 are counted. The resulting relative number of large-
deviation nodes in each interval is displayed as a density
plot. As can be seen, a clear diagonal structure is observed
in the plots, indicating that the characteristic flow intensity
X, exists for each eigenmode « specifying the localized
subset and

—ReA ~ X,,, C))

holds. This localization property can be found even when
the transportation capacity W;; is not equal but rather ran-
domly chosen [Fig. 1 (c)]. Furthermore, it is not sensitive
to the network architecture [Fig. 1 (d) and (e) for Erdos-
Rényi networks [7]].

3. Perturbation approximation of advection eigenvec-
tors

3.1. Perturbation approximation

To explain the localization of the advection eigenvectors,
we propose a perturbation approach. In the advection ma-
trix, the diagonal elements represent the total passing flows
on the nodes, M;; = —X;, whereas the non-diagonal ele-
ments are the incoming flow along the links, M;; = J;;A;;
(i # Jj). The total flow X; is divided at each node into flows
Jji along the outgoing links, resulting in non-diagonal ele-
ments of the order O({X)/(k)), where (k) = ZQ’ =1 WijAii/N
is the mean degree of the network. '

Thus, by introducing a parameter € = (k)~!, the advec-
tion matrix can be split as

M= M() + EM], (10)
so that matrix elements My;; = -X;0;; and M;;; =
(k)JijA;; have the same order O({X)). If the network is
sufficiently dense, € = (k)™' <« 1 holds. Thus, we can

apply the perturbation approximation to evaluate eigenvec-
tors. A similar perturbation approach was used to analyze
the eigenvalues of the Laplacian matrix [8].

It is convenient to employ the bra-ket notation to denote
the advection eigenvectors, 1/_;(") = |a), and drop the sum-
mation symbol as Z’;’:] M,-ﬂ//;“) = M|a). We expand the
advection eigenvectors and eigenvalues in the series of the
parameter € as

mwﬂmemn+émb+
A =AY + A + EAY + -,

Y
12)

and substitute them into the eigenvalue equation M |a) =
A9 @) to obtain a set of perturbation equations. In the
present study we use the equations up to the second order
of €

(Lo = A§”)lady =0, (13)
(Lo = A )iy = = (L1 = Ao, (14)

= AP, + A e - (15)

The exact solution of the zeroth-order equation (13) can
be found as

~,0 and A =-X,,

I
~~
L

la)o (16)
for « = 1,..,N. Each eigenvector has a single non-
vanishing element at the network node i = @, and the corre-
sponding eigenvalue Agy) is equal to the negative of the to-
tal passing flow X,, at that node. Note that the zeroth-order
approximation (16) can explain the relation between the
spectrum and the characteristic flow intensity, i.e., Eq. (9).

By examining the perturbation equations (13)-(15), we
calculate the higher-order corrections to the eigenvector up
to the second order; |@)ypprox = |@)o+€ @), +€%|a),. If there
is a degeneration, i.e., a set of zeroth-order eigenvectors be-
longs to the same eigenvalue, we should employ the degen-
erate perturbation theory to calculate perturbation correc-
tions. In the present case, we numerically verified that no
degeneration exists in all the networks considered in Fig. 1.
Thus, here we use the standard perturbation theory.

The first- and second-order correction can be obtained as
follows (see e.g., [5] for the derivation):

M
o, = ;Vbo jfﬁ') "agﬁ(;, (17
_ 0(3|M1 [V)0 o{¥IM1la),
|Q>2 - ﬁz#; ; |ﬂ>0 A(a,) _ AO(‘B))(AE){Y) B Agy))
_ZLB>0 0<5|M1 l(cj)>0 0(0(1’!?41 @Yo (18)
B (A()( - A() )2

The second term on the right hand side of Eq. (18) vanishes
in the present case because o(@|M||a), = (k)J;;Ai; = 0.
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3.2. Predicted advection eigenvectors

In Figure 2, the predicted eigenvectors are displayed in
the density plots as used in Fig. 1. It can be seen in the fig-
ures that, in the predicted eigenvectors, the large-deviation
nodes exhibit diagonal structures for all considered net-
works. This indicates that the perturbation approximation
can explain the localization of the advection eigenvectors.

Moreover, it can also explain the localization strength of
each eigenvector. As can be seen in Fig. 1 (a), eigenvec-
tors with either a large or small class of @ strongly localize
in the network, i.e., large-deviation points are shared by a
small number of nodes (¢ = 50 and 450). By contrast, the
localization of eigenvectors with an intermediate class of &
is weak and, a relatively large number of nodes share the
large-deviation points (@ = 250). These characteristics are
represented by the color map of the density plot. Strongly
localized nodes are represented by a dark color because the
number of nodes sharing large-deviation points is small,
which causes the density to become high at these nodes. It
can be seen in Fig. 2 that the color code in the density plot
is qualitatively reproduced in the results of the perturbation
approximation, thereby indicating the ability of the approx-
imation to predict the localization pattern of the advection
eigenvectors.

Note that Egs. (17) and (18) indicate that each com-
ponent of the approximate eigenvectors has real values
whereas, as mentioned before, the advection eigenvectors
may generally have components consisting of complex val-
ues. Thus, the perturbation approach cannot predict the
eigenvectors quantitatively. Nevertheless, it is remarkable
that the localization properties are successfully reproduced.

4. Conclusions

In this work, we developed a perturbation approach to
explain the localization of the advection eigenvectors in
networks. We divided the advection matrix into two parts
corresponding to the diagonal and non-diagonal elements.
If the network is sufficiently dense, the components of these
two matrices have a distinct order, so that we could use
the perturbation approximation to evaluate the eigenvec-
tors and eigenvalues. We calculated the perturbation cor-
rections up to the second order.

It was found that the zeroth-order approximation can ex-
plain the correlation between the real parts of the advection
eigenvalues and the characteristic flow intensities of local-
ized nodes. Moreover, the second-order approximation can
reproduce the localization property of the advection eigen-
vectors. The results are neither sensitive to the network
architecture nor to the weight of links.
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Figure 2: Prediction of the advection eigenvectors used in
Fig. 1. Density plot of the large-deviation points for (a,b)
Barabasi-Albert, and (c,d) Erdos-Rényi networks. Trans-
portation capacity W;; is either (a,c) equal for all links, i.e.,
W;; = 1, or (b,d) randomly drawn from the uniform distri-
bution 0 < W;; < 1. Counting intervals for these density
maps are (a,b) A[In(-ReA@)] = A[In(X;)] = 0.1 and (c,d)
A[ln(-ReA )] = A[In(X;)] = 0.08.
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