円βアンサンブルの中心極限定理と Jack 多項式

松本 詔 (MATSUMOTO, Sho)

鹿児島大学 大学院理工学研究科 Kagoshima University

鹿児島大学公式マスコットキャラクター

19 February, 2015

Contents

Joint Work with Tiefeng Jiang (Univ of Minnesota) To appear in The Annals of Probability

- 1 Diaconis-Shahshahani Theorem for CUE
- 2 Circular β -ensembles
- Moment inequalities for traces
- 4 CLT for COE and CSE
- 5 Future works

Circular unitary ensemble (CUE)

Let $\mathbf{U}(n) = \{g \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid gg^* = I_n\}$ be the unitary group of degree n. There exists a unique probability measure μ on $\mathbf{U}(n)$ satisfying

$$\int_{\mathsf{U}(n)} f(g_1 g g_2) \mu(dg) = \int_{\mathsf{U}(n)} f(g) \mu(dg)$$

for any integrable function f on $\mathbf{U}(n)$ and fixed matrices $g_1, g_2 \in \mathbf{U}(n)$. We call μ the Haar probability measure on $\mathbf{U}(n)$.

The probability space $(\mathbf{U}(n), \mathbf{Borel}, \mu)$ is, by definition, the circular unitary ensemble (CUE).

Let U_n be an $n \times n$ random unitary matrix distributed in the Haar probability measure μ . We call U_n a CUE matrix.

Trivial Example.
$$(n = 1)$$
. $U(1) = \mathbb{T} = \{g = e^{i\theta} \mid 0 \le \theta < 2\pi\}$. $\mu(dg) = \frac{d\theta}{2\pi}$.

Weyl's integral formula

Let $e^{i\theta_1}, \ldots, e^{i\theta_n}$ $(\theta_1, \ldots, \theta_n \in [0, 2\pi))$ be eigenvalues of U_n . Weyl's integral formula for the unitary group claims that the density function for $e^{i\theta_1}, \ldots, e^{i\theta_n}$ is given by

$$\frac{1}{(2\pi)^n n!} \prod_{1 \leq j < k \leq n} |e^{i\theta_j} - e^{i\theta_k}|^2.$$

Example.

$$\mathbb{E}[|\operatorname{Tr}(U_n^2)|^4] = \int_{\mathbf{U}(n)} |\operatorname{Tr}(g^2)|^4 \mu(dg)$$

$$= \frac{1}{(2\pi)^n n!} \int_{[0,2\pi]^n} \left| \sum_{j=1}^n e^{2i\theta_j} \right|^4 \prod_{1 \le j < k \le n} |e^{i\theta_j} - e^{i\theta_k}|^2 d\theta_1 d\theta_2 \cdots d\theta_n.$$

Partitions

Partition of integer

- A partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$ of $m \in \mathbb{N}$ is a weakly-decreasing sequence of positive integers with $|\lambda| = \sum_{i=1}^{l} \lambda_i = m$.
- We denote by $\ell(\lambda)$ the length of λ .
- For each positive integer r, we denote by $m_r(\lambda)$ the multiplicity of r in λ :

$$m_r(\lambda) = |\{j \mid 1 \le j \le l, \ \lambda_j = r\}|.$$

Note
$$m = |\lambda| = \sum_{r \ge 1} r m_r(\lambda)$$
 and $\ell(\lambda) = \sum_{r \ge 1} m_r(\lambda)$.

- We often write $\lambda = (1^{m_1(\lambda)}, 2^{m_2(\lambda)}, \dots)$.
- Put $z_{\lambda} = (\lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_I) \cdot (m_1(\lambda)! \cdot m_2(\lambda)! \cdots)$.

Example. If $\lambda = (4, 2, 2, 1, 1, 1)$, then $|\lambda| = 11$, $\ell(\lambda) = 6$, and $\lambda = (1^3, 2^2, 4^1)$. Moreover, $z_{\lambda} = (4 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1) \cdot (3! \cdot 2! \cdot 0! \cdot 1!) = 192$.

Partitions and traces

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_I)$ be a partition. For a (random) matrix U, put

$$p_{\lambda}(U) = \prod_{j=1}^{l} p_{\lambda_j}(U), \qquad p_r(U) = \operatorname{Tr} U^r.$$

Example. $p_{(4,2,2,1,1,1)}(U) = (\operatorname{Tr} U^4)(\operatorname{Tr} U^2)^2(\operatorname{Tr} U)^3$.

Question.

Let U_n be an $n \times n$ CUE matrix. Let μ and ν be partitions. We shall consider the mixed moment

$$\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right].$$

This is a mixed moment for a family of random variables $Tr(U_n^j), Tr(U_n^{-j})$ (j = 1, 2, ...).

Diaconis-Shahshahani Theorem

Theorem. [Diaconis–Shahshahani (1994)], [Diaconis–Evans (2001)]

For $n \geq |\mu| \vee |\nu|$,

$$\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right] = \delta_{\mu\nu}z_{\mu}.$$

This is independent of n.

Example. If $\mu = \nu = (4, 2, 2, 1, 1, 1)$ and $n \ge 11$ then

$$\mathbb{E}[|p_{\mu}(U_n)|^2] = z_{\mu} = 192.$$

If $\mu
eq
u$ and $n \geq |\mu| \vee |\nu|$ then $\mathbb{E}\left[p_{\mu}(U_n) \overline{p_{\nu}(U_n)} \right] = 0$.

CLT for CUE

 $\xi^{\mathbb{C}} = \frac{1}{\sqrt{2}}(\xi^{\mathbb{R}} + i\eta^{\mathbb{R}})$, where $\xi^{\mathbb{R}}, \eta^{\mathbb{R}}$ are independent standard real normal.

Complex normal random variables

Let $\xi_1^{\mathbb{C}}, \xi_2^{\mathbb{C}}, \dots, \xi_k^{\mathbb{C}}$ be independent standard complex normal random variables. Let $\mu = (1^{a_1}, 2^{a_2}, \dots, k^{a_k})$ and $\nu = (1^{b_1}, 2^{b_2}, \dots, k^{b_k})$ be partitions. Then

$$\mathbb{E}\left[\prod_{j=1}^k (\sqrt{j}\xi_j^{\mathbb{C}})^{a_j} \overline{(\sqrt{j}\xi_j^{\mathbb{C}})^{b_j}}\right] = \delta_{\mu\nu} z_{\mu}.$$

Corollary. [Diaconis-Shahshahani (1994)], [Diaconis-Evans (2001)]

Let U_n be an $n \times n$ CUE matrix. For each $k \ge 1$,

$$(\mathsf{Tr}(U_n),\mathsf{Tr}(U_n^2),\ldots,\mathsf{Tr}(U_n^k)) \xrightarrow{\mathsf{dist.}} (\sqrt{1}\xi_1^\mathbb{C},\sqrt{2}\xi_2^\mathbb{C},\ldots,\sqrt{k}\xi_k^\mathbb{C})$$

as $n \to \infty$.

Proof of Diaconis-Shahshahani

We use the representation theory and symmetric functions. Recall the Schur polynomial

$$s_{\lambda}(x_1,\ldots,x_n)=\frac{\det(x_j^{\lambda_i+n-i})}{\det(x_j^{n-i})} \qquad (\ell(\lambda)\leq n).$$

For an $n \times n$ matrix A with eigenvalues a_1, \ldots, a_n , we put

$$s_{\lambda}(A) = s_{\lambda}(a_1, \ldots, a_n)$$

if $\ell(\lambda) \leq n$, and $s_{\lambda}(A) = 0$ otherwise.

First, we use the Frobenius formula

$$ho_{\mu}=\sum_{\lambda}\chi_{\mu}^{\lambda}s_{\lambda},$$

where $\chi_{\mu}^{\lambda} \in \mathbb{Z}$ are character values for symmetric groups. Then

$$\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right] = \sum_{\lambda,\rho} \chi_{\mu}^{\lambda} \chi_{\nu}^{\rho} \mathbb{E}\left[s_{\lambda}(U_n)\overline{s_{\rho}(U_n)}\right]$$

Proof of Diaconis-Shahshahani

Second, we use the orthogonal relation for Schur polynomials

$$\mathbb{E}[s_{\lambda}(U_n)\overline{s_{\rho}(U_n)}] = \delta(\ell(\lambda) \leq n) \cdot \delta_{\lambda\rho}.$$

Then, since $|\lambda| = |\rho| = |\mu| = |\nu| \le n$,

$$\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right] = \sum_{\lambda} \chi_{\mu}^{\lambda} \chi_{\nu}^{\lambda}.$$

Third, we use the character relation of the second kind for symmetric groups. Then

$$\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right]=z_{\mu}\delta_{\mu\nu}.$$

This completes the proof of Diaconis-Shahshahani Theorem.

- Diaconis-Shahshahani Theorem for CUE
- 2 Circular β -ensembles
- Moment inequalities for traces
- 4 CLT for COE and CSE
- 5 Future works

Circular orthogonal/symplectic ensembles

Remark. Diaconis–Shahshahani shows a similar formula for the orthogonal group and symplectic group.

Let
$$V_N^{(2)} = U_N$$
 be an $N \times N$ CUE matrix. $V_n^{(1)} = U_n U_n^{\mathrm{T}}$: a COE matrix $(\beta = 1)$. $V_n^{(4)} = U_{2n} U_{2n}^{\mathrm{D}}$: a CSE matrix $(\beta = 4)$. Here $U_{2n}^{\mathrm{D}} = J_n U_{2n}^{\mathrm{T}} J_n^{\mathrm{T}}$ and $J_n = \begin{pmatrix} O_n & I_n \\ -I_n & O_n \end{pmatrix}$.

The density function for eigenvalues of $V_n^{(\beta)}$ ($\beta = 1, 2, 4$) is given by

$$\frac{\Gamma(1+\beta/2)^n}{(2\pi)^n\Gamma(1+\beta n/2)}\prod_{1\leq j\leq k\leq n}|e^{i\theta_j}-e^{i\theta_k}|^{\beta}.$$

Probability spaces for three classes of random matrices $V_n^{(\beta)}$ ($\beta = 1, 2, 4$) are called Dyson's circular ensembles (1962).

Circular β -ensembles

Circular β -ensembles $C\beta E_n$ with general $\beta > 0$

Space:
$$\{(e^{i\theta_1},\ldots,e^{i\theta_n})\}=\mathbb{T}^{\times n}\cong [0,2\pi)^{\times n}$$
.

Density:
$$\frac{\Gamma(1+\beta/2)^n}{(2\pi)^n\Gamma(1+\beta n/2)}\prod_{1\leq j< k\leq n}|e^{i\theta_j}-e^{i\theta_k}|^\beta.$$

- This is the eigenvalue density for circular orthogonal/unitary/symplectic ensembles for $\beta=1/2/4$, respectively.
- Matrix expression $V_n^{(\beta)}$ for general $\beta > 0$: [Killip–Nenciu (2004)]

$$Z_n^{(\beta)} = (e^{i\theta_1}, \dots, e^{i\theta_n})$$
: A random array taken from the C β E.

We are interested in "traces of powers"

$$\rho_r(Z_n^{(\beta)}) = \sum_{i=1}^n e^{ir\theta_i} = \operatorname{Tr}\left[(V_n^{(\beta)})^r \right] \qquad (r = 1, 2, 3, \dots).$$

$C\beta E$ case – prologue –

Question.

Extend the Diaconis–Shahshahani theorem to the $C\beta E$ with general $\beta>0$. In other words, compute

$$\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]$$

$$= \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \prod_{r=1}^{\ell(\mu)} \left(\sum_{j=1}^{n} e^{i\mu_{r}\theta_{j}}\right) \cdot \prod_{r=1}^{\ell(\nu)} \left(\sum_{j=1}^{n} e^{i\nu_{r}\theta_{j}}\right)$$

$$\times \frac{\Gamma(1+\beta/2)^{n}}{(2\pi)^{n}\Gamma(1+\beta n/2)} \prod_{1 \leq j \leq k \leq n} |e^{i\theta_{j}} - e^{i\theta_{k}}|^{\beta} d\theta_{1} \cdots d\theta_{n}$$

Recall the $\beta=2$ case: If $n\geq |\mu|=|\nu|$ then

$$\mathbb{E}\left[p_{\mu}(Z_n^{(2)})\overline{p_{\nu}(Z_n^{(2)})}\right]=z_{\mu}\delta_{\mu\nu}.$$

$C\beta E$ case – prologue –

Put $\alpha = 2/\beta$.

Example. Consider the average of $|p_2(Z_n^{(\beta)})|^2$. Note that $|p_2(Z_n^{(\beta=2)})|^2 = |\operatorname{Tr}(U_n^2)|^2$. For $n \geq 2$,

$$\mathbb{E}\left[|p_{2}(Z_{n}^{(\beta)})|^{2}\right] = \frac{2\alpha n(n^{2} + 2(\alpha - 1)n + \alpha^{2} - 3\alpha + 1)}{(n + \alpha - 1)(n + 2\alpha - 1)(n + \alpha - 2)}$$

$$= \begin{cases} \frac{4(n^{2} + 2n - 1)}{(n + 1)(n + 3)} & \text{if } \beta = 1 \text{ i.e. } \alpha = 2 \text{ (COE case)} \\ 2 & \text{if } \beta = 2 \text{ i.e. } \alpha = 1 \text{ (CUE case)} \\ \frac{4n^{2} - 4n - 1}{(2n - 1)(2n - 3)} & \text{if } \beta = 4 \text{ i.e. } \alpha = 1/2 \text{ (CSE case)}. \end{cases}$$

$C\beta E$ case – prologue –

Example. For $n \ge 2$,

$$\mathbb{E}\left[p_2(Z_n^{(\beta)})\overline{p_{(1,1)}(Z_n^{(\beta)})}\right] = \frac{2\alpha^2(\alpha-1)n}{(n+\alpha-1)(n+2\alpha-1)(n+\alpha-2)}$$

$$= \begin{cases} \frac{8}{(n+1)(n+3)} & \text{if } \beta=1 \text{ i.e. } \alpha=2 \text{ (COE case)} \\ 0 & \text{if } \beta=2 \text{ i.e. } \alpha=1 \text{ (CUE case)} \\ \frac{-1}{(2n-1)(2n-3)} & \text{if } \beta=4 \text{ i.e. } \alpha=1/2 \text{ (CSE case)}. \end{cases}$$

Thus, except $\beta=2$, even if $n\geq |\mu|\vee |\nu|$ and $\mu\neq \nu$, the moments

$$\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right] \text{ can be nonzero. In general, } \mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]$$
 would be quite complicated.

Strategy

We give up on the fulfillment of the explicit expression for

$$\mathbb{E}\left[p_{\mu}(Z_n^{(\beta)})\overline{p_{\nu}(Z_n^{(\beta)})}\right].$$

- Diaconis-Shahshahani Theorem for CUE
- 2 Circular β -ensembles
- Moment inequalities for traces
- 4 CLT for COE and CSE
- 5 Future works

Main Result 1

Let $\beta > 0$ and set $\alpha = 2/\beta$. Let m be a positive integer. Define two constants

$$A = A(n, m, \alpha) = \left(1 - \frac{|\alpha - 1|}{n - m + \alpha} \delta(\alpha \ge 1)\right)^{m},$$

$$B = B(n, m, \alpha) = \left(1 + \frac{|\alpha - 1|}{n - m + \alpha} \delta(\alpha < 1)\right)^{m}.$$

Remark: $A \leq B$. Either A = 1 or B = 1 for each α . A(n, m, 1) = B(n, m, 1) = 1.

We shall obtain an upper bound and lower bound for

$$\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]$$

Main Result 1

Theorem 1. [Jiang-M (in press)]

(i) If μ is a partition of m and $n \ge m$, then

$$A \leq \frac{\mathbb{E}\left[|p_{\mu}(Z_n^{(\beta)})|^2\right]}{\alpha^{\ell(\mu)}z_{\mu}} \leq B.$$

(ii) If μ and ν are distinct partitions of m and $n \geq m$, then

$$\left|\mathbb{E}\left[p_{\mu}(Z_n^{(\beta)})\overline{p_{\nu}(Z_n^{(\beta)})}\right]\right| \leq (|A-1| \vee |B-1|) \cdot \sqrt{\alpha^{\ell(\mu)+\ell(\nu)}z_{\mu}z_{\nu}}.$$

(iii) If μ and ν are partitions with $|\mu| \neq |\nu|$, then

$$\mathbb{E}\left[p_{\mu}(Z_n^{(\beta)})\overline{p_{\nu}(Z_n^{(\beta)})}\right]=0.$$

Substituting $\beta = 2$ reduces this to the Diaconis–Shahshahani theorem.

Main Result 1

If we evaluate constants A and B, we obtain the following corollary.

Corollary.

(i) If μ is a partition of m and $n \geq m$, then

$$\left|\mathbb{E}\left[|p_{\mu}(Z_{n}^{(\beta)})|^{2}\right] - \alpha^{\ell(\mu)}z_{\mu}\right| \leq 6|\alpha - 1|\frac{m}{n}\alpha^{\ell(\mu)}z_{\mu}.$$

(ii) If μ and ν are distinct partitions of m and $n \geq m$, then

$$\left| \mathbb{E}\left[p_{\mu}(Z_n^{(\beta)}) \overline{p_{\nu}(Z_n^{(\beta)})} \right] \right| \leq 6|\alpha - 1| \frac{m}{n} \sqrt{\alpha^{\ell(\mu) + \ell(\nu)} z_{\mu} z_{\nu}}.$$

In particular, for μ, ν fixed,

$$\lim_{n\to\infty}\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]=\delta_{\mu\nu}\left(\frac{2}{\beta}\right)^{\ell(\mu)}z_{\mu}.$$

CLT for $C\beta E$

Corollary.

Let $\xi_1^{\mathbb{C}}, \xi_2^{\mathbb{C}}, \ldots$ be independent standard complex normal random variables. For each k > 1, the random vector

$$(p_1(Z_n^{(\beta)}), p_2(Z_n^{(\beta)}), \ldots, p_k(Z_n^{(\beta)}))$$

converges in distribution to

$$(\sqrt{\frac{2\cdot 1}{\beta}}\xi_1^{\mathbb{C}}, \sqrt{\frac{2\cdot 2}{\beta}}\xi_2^{\mathbb{C}}, \dots, \sqrt{\frac{2k}{\beta}}\xi_k^{\mathbb{C}})$$

as $n \to \infty$.

Remark that this corollary is not new.

Outline of the proof of Theorem 1: Jack polynomials

The idea of the proof is the same with that of Diaconis–Shahshahani. But we replace the Schur polynomial s_{λ} by the Jack polynomial $J_{\lambda}^{(\alpha)}$. The Jack polynomial is a deformation of the Schur polynomial with a Jack parameter α .

$$J_{\lambda}^{(1)} = ext{(hook-length product of } \lambda ext{)} imes s_{\lambda}.$$

The analytic orthogonal relation for Jack polynomials:

$$\mathbb{E}\left[J_{\lambda}^{(2/\beta)}(Z_{n}^{(\beta)})\overline{J_{\mu}^{(2/\beta)}(Z_{n}^{(\beta)})}\right] = \delta_{\lambda\mu} \cdot \delta(\ell(\lambda) \leq n) \cdot C_{\lambda}(2/\beta) \cdot \mathcal{N}_{\lambda}^{2/\beta}(n),$$

where

$$C_{\lambda}(\alpha) = \prod_{(i,j)\in\lambda} (\alpha(\lambda_i - j) + \lambda'_j - i + 1)(\alpha(\lambda_i - j) + \lambda'_j - i + \alpha),$$

$$N_{\lambda}^{\alpha}(n) = \prod_{(i,j)\in\lambda} \frac{n + (j-1)\alpha - (i-1)}{n + j\alpha - i}. \qquad (\mathcal{N}_{\lambda}^{\alpha=1}(n) \equiv 1)$$

Outline of the proof of Theorem 1: Algebraic expression

Expansion of the power-sum p_{μ} in Jack polynomials:

$$p_{\mu} = \alpha^{\ell(\mu)} z_{\mu} \sum_{\lambda: |\lambda| = |\mu|} \frac{\theta_{\mu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} J_{\lambda}^{(\alpha)},$$

where $\theta_{\mu}^{\lambda}(\alpha)$ is the Jack character.

$$\theta_{\mu}^{\lambda}(1) = z_{\mu}^{-1} \cdot (\text{hook-length product of } \lambda) \cdot \chi_{\mu}^{\lambda}.$$

Proposition (Algebraic Expression).

If μ and ν are partitions of m, then

$$\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right] = \alpha^{\ell(\mu) + \ell(\nu)} z_{\mu} z_{\nu} \sum_{\substack{\lambda: |\lambda| = m, \\ \ell(\lambda) \leq n}} \frac{\theta_{\mu}^{\lambda}(\alpha)\theta_{\nu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} \frac{\mathcal{N}_{\lambda}^{\alpha}(n)}{C_{\lambda}(\alpha)}.$$

Outline of the proof of Theorem 1: Evaluation of $\mathcal{N}^{\alpha}_{\lambda}(n)$

Recall

$$\mathcal{N}_{\lambda}^{\alpha}(n) = \prod_{(i,j)\in\lambda} \frac{n + (j-1)\alpha - (i-1)}{n + j\alpha - i}.$$

$$A(n, m, \alpha) = \left(1 - \frac{|\alpha - 1|}{n - m + \alpha}\delta(\alpha \ge 1)\right)^{m},$$

$$B(n, m, \alpha) = \left(1 + \frac{|\alpha - 1|}{n - m + \alpha}\delta(\alpha < 1)\right)^{m}.$$

Lemma (Elementary estimation).

Assume $n \ge m$. For any partition λ of m,

$$A(n, m, \alpha) \leq \mathcal{N}^{\alpha}_{\lambda}(n) \leq B(n, m, \alpha).$$

$$|\mathcal{N}^{\alpha}_{\lambda}(n)-1| \leq |A(n,m,\alpha)-1| \vee |B(n,m,\alpha)-1|.$$

Outline of the proof of Theorem 1: Jack characters

Show only an upper bound in the $\mu = \nu$ case. We have obtained

$$\mathbb{E}\left[|p_{\mu}(Z_{n}^{(\beta)})|^{2}\right] \leq B(n, m, \alpha) \cdot (\alpha^{\ell(\mu)} z_{\mu})^{2} \sum_{\substack{\lambda: |\lambda|=m, \\ \ell(\lambda) \leq n}} \frac{\theta_{\mu}^{\lambda}(\alpha)\theta_{\mu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)}.$$

We now suppose $n \ge m$. Using the orthogonal relation for Jack characters

$$\sum_{\lambda} \frac{\theta_{\mu}^{\lambda}(\alpha)\theta_{\nu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} = \delta_{\mu\nu}(\alpha^{\ell(\mu)}z_{\mu})^{-1},$$

we finally obtain

$$\mathbb{E}\left[|p_{\mu}(Z_{n}^{(\beta)})|^{2}\right] \leq \alpha^{\ell(\mu)}z_{\mu}B(n,m,\alpha).$$

- Diaconis-Shahshahani Theorem for CUE
- 2 Circular β -ensembles
- Moment inequalities for traces
- 4 CLT for COE and CSE
- 5 Future works

Linear combination of traces $(\beta = 2)$

Let $\xi^{\mathbb{C}}$ be a complex standard normal random variable.

Theorem. [Diaconis-Evans (2001)]

Let U_n be an $n \times n$ CUE matrix. Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying $\sum_{j=1}^{\infty} j|a_j|^2 = \sigma^2 < \infty$. Then, as $n \to \infty$,

$$\sum_{j=1}^{\infty} a_j p_j(U_n) = \sum_{j=1}^{\infty} a_j \operatorname{Tr}[(U_n)^j] \xrightarrow{\operatorname{dist.}} \sigma \xi^{\mathbb{C}}.$$

Note: Diaconis-Evans obtained a slightly stronger version.

Key lemma (easy proof).

$$\mathbb{E}\left[|p_m(U_n)|^2\right] = m \wedge n$$
 for all positive integers m, n .

Proof of $\mathbb{E}\left[|p_m(U_n)|^2\right] = m \wedge n$

For any $m, n \in \mathbb{N}$, we have

$$\mathbb{E}\left[|p_m(U_n)|^2\right] = \sum_{\substack{\lambda: |\lambda| = m, \\ \ell(\lambda) \le n}} |\chi_{(m)}^{\lambda}|^2.$$

It is well known that

$$\chi_{(m)}^{\lambda} = \begin{cases} (-1)^{\ell(\lambda)-1} & \text{if } \lambda \text{ is a hook,} \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$\mathbb{E}\left[|p_m(U_n)|^2\right]=\#\{\text{hooks with }m\text{ boxes and with height }\leq n\}=m\wedge n.$$

a hook

Linear combination of traces $(\beta = 1)$

Theorem 2. [Jiang-M (in press)] CLT for COE

Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying

$$\sum_{j=1}^{\infty} j|a_j|^2 = \sigma^2 < \infty.$$

Then, as $n \to \infty$,

$$\sum_{j=1}^{\infty} a_j \rho_j(Z_n^{(\beta=1)}) \quad \xrightarrow{\text{dist.}} \quad \sqrt{2}\sigma \xi^{\mathbb{C}}.$$

Key lemma (quite complicated proof).

There exists a universal constant K such that

$$\mathbb{E}\left[|p_m(Z_n^{(\beta=1)})|^2\right] \le Km$$
 for all positive integers m, n .

Strategy of proof of $\mathbb{E}\left[|p_m(Z_n^{(\beta=1)})|^2\right] \leq Km^{-1}$

Set $\beta = 1$. Then $\alpha = 2/\beta = 2$. For any $m, n \in \mathbb{N}$,

$$\mathbb{E}\left[|p_m(Z_n^{(\beta=1)})|^2\right] = (2m)^2 \sum_{\substack{\lambda: |\lambda|=m,\\ \ell(\lambda) \leq n}} \frac{|\theta_{(m)}^{\lambda}(2)|^2}{C_{\lambda}(2)} \mathcal{N}_{\lambda}^{(2)}(n).$$

It is well known that

$$\theta_{(m)}^{\lambda}(2) = \begin{cases} \prod_{\substack{(i,j) \in \lambda \\ (i,j) \neq (1,1)}} (2j - i - 1) & \text{if } \lambda_3 \leq 1, \\ 0 & \text{otherwise.} \end{cases}$$

×	2	4	6
-1	1	3	
-2			,
-3			

$$\theta_{(10)}^{(4,3,1,1,1)}(2) = 3456$$

-4

Strategy of proof of $\mathbb{E}\left[|p_m(Z_n^{(eta=1)})|^2\right] \leq Km^{-1}$

From our Theorem 1, we have: $\mathbb{E}\left[|p_m(Z_n^{(\beta=1)})|^2\right] \leq 2m$ for $m \leq n$.

Suppose n < m. Elementary (but involved) estimation gives

$$(2m)^{2} \frac{|\theta_{(m)}^{(m)}(2)|^{2}}{C_{(m)}(2)} \mathcal{N}_{(m)}^{(2)}(n) < C_{1}\sqrt{n};$$

$$(2m)^{2} \sum_{\substack{\lambda = (m-r,r) \\ 1 \le r \le m/2}} \frac{|\theta_{(m)}^{\lambda}(2)|^{2}}{C_{\lambda}(2)} \mathcal{N}_{\lambda}^{(2)}(n) < C_{2}\sqrt{n};$$

$$(2m)^{2} \sum_{\substack{\lambda = (r,s,1^{m-r-s}) \\ r \ge s \ge 1 \\ 3 \le \ell(\lambda) = m-r-s+2 \le n}} \frac{|\theta_{(m)}^{\lambda}(2)|^{2}}{C_{\lambda}(2)} \mathcal{N}_{\lambda}^{(2)}(n) < C_{3}n;$$

Linear combination of traces $(\beta = 4)$

Theorem 3. [Jiang-M (in press)] CLT for CSE

Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying $\sum_{j=1}^{\infty}(j\log j)|a_j|^2<\infty$. Set $\sigma^2=\sum_{j=1}^{\infty}j|a_j|^2$. Then, as $n\to\infty$,

$$\sum_{j=1}^{\infty} a_j p_j(Z_n^{(\beta=4)}) \quad \xrightarrow{\text{dist.}} \quad \frac{1}{\sqrt{2}} \sigma \xi^{\mathbb{C}}.$$

Key lemma (quite complicated proof).

There exists a universal constant K such that

$$\mathbb{E}\left[|p_m(Z_n^{(\beta=4)})|^2\right] \leq Km\log m \qquad \text{ for all positive integers } m,n.$$

Remark: There exist universal constants K_1 , K_2 such that (if n=m) $K_1 m \log m \leq \mathbb{E}\left[|p_m(Z_m^{(\beta=4)})|^2\right] \leq K_2 m \log m$.

- Diaconis-Shahshahani Theorem for CUE
- 2 Circular β -ensembles
- Moment inequalities for traces
- 4 CLT for COE and CSE
- 5 Future works

Future works

Conjecture

Let β be any positive real number. Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying $\sum_{j=1}^{\infty} j|a_j|^2 =: \sigma^2 < \infty$. Then, as $n \to \infty$,

$$\sum_{j=1}^{\infty} a_j p_j(Z_n^{(\beta)}) \quad \xrightarrow{\text{dist.}} \quad \sqrt{\frac{2}{\beta}} \sigma \xi^{\mathbb{C}}.$$

Consider a Macdonald version.

Jack polynomial $lpha > 0 \xrightarrow{generalization} \mathsf{Macdonald}$ polynomial $q, t \in (-1, 1)$

$$\text{(const.)} \prod_{1 \leq j < k \leq n} |e^{i\theta_j} - e^{i\theta_k}|^{\beta} \xrightarrow{\text{generalization}}$$

$$\text{(const.)} \prod_{1 \le j < k \le n} \prod_{r=0}^{\infty} \left| \frac{1 - q^r e^{i(\theta_j - \theta_k)}}{1 - tq^r e^{i(\theta_j - \theta_k)}} \right|^2$$

Future works

Generalize the following theorem to general $\beta > 0$.

Theorem [Johansson (1997)]

Let U_n be an $n \times n$ CUE matrix. Let $a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}$ and consider the random variable

$$X_n = \sum_{j=1}^m (a_j \operatorname{Re} \operatorname{Tr}[(U_n)^j] + b_j \operatorname{Im} \operatorname{Tr}[(U_n)^j]).$$

Set $\sigma^2 := \operatorname{Var}[X_n] = \frac{1}{2} \sum_{j=1}^m j(a_j^2 + b_j^2)$. Let $F_n(x)$ be the distribution function of the random variable $\sigma^{-1}X_n$, $\Phi(x)$ the standard normal distribution function: $\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$. Then there are positive constants C and δ such that

$$\sup_{x \in \mathbb{R}} |F_n(x) - \Phi(x)| \le Cn^{-\delta n} \quad \text{for all } n \ge 1.$$

- 1 Diaconis-Shahshahani Theorem for CUE
- 2 Circular β -ensembles
- Moment inequalities for traces
- 4 CLT for COE and CSE
- Future works

Thank you for listening.

