円βアンサンブルのトレースの中心極限定理

松本 詔 (MATSUMOTO, Sho)

鹿児島大学 大学院理工学研究科 Kagoshima University

鹿児島大学公式マスコットキャラクター

19 December, 2014

Contents

Joint Work with Tiefeng Jiang (Univ of Minnesota) To appear in The Annals of Probability

- Introduction
- 2 Diaconis-Shahshahani Theorem for CUE
- Moment inequalities for traces
- 4 CLT for COE and CSE

Circular unitary ensemble (CUE)

Let $\mathbf{U}(n) = \{g \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid gg^* = I_n\}$ be the unitary group of degree n. There exists a unique probability measure μ on $\mathbf{U}(n)$ satisfying

$$\int_{\mathsf{U}(n)} f(g_1 g g_2) \mu(dg) = \int_{\mathsf{U}(n)} f(g) \mu(dg)$$

for any integrable function f on $\mathbf{U}(n)$ and fixed matrices $g_1, g_2 \in \mathbf{U}(n)$. We call μ the Haar probability measure on $\mathbf{U}(n)$.

Let U_n be an $n \times n$ random unitary matrix distributed in the Haar probability measure μ . We call U_n a CUE matrix.

Let $e^{i\theta_1}, \ldots, e^{i\theta_n}$ $(\theta_1, \ldots, \theta_n \in [0, 2\pi))$ be eigenvalues of U_n . Weyl's integral formula for the unitary group claims that the density function for $e^{i\theta_1}, \ldots, e^{i\theta_n}$ is given by

$$\frac{1}{(2\pi)^n n!} \prod_{1 \le j < k \le n} |e^{i\theta_j} - e^{i\theta_k}|^2.$$

Circular orthogonal/symplectic ensembles

Let
$$V_N^{(2)} = U_N$$
 be an $N \times N$ CUE matrix. $V_n^{(1)} = U_n U_n^{\mathrm{T}}$: a COE matrix $(\beta = 1)$. $V_n^{(4)} = U_{2n} U_{2n}^{\mathrm{D}}$: a CSE matrix $(\beta = 4)$. Here $U_{2n}^{\mathrm{D}} = J_n U_{2n}^{\mathrm{T}} J_n^{\mathrm{T}}$ and $J_n = \begin{pmatrix} O_n & I_n \\ -I_n & O_n \end{pmatrix}$.

The density function for eigenvalues of $V_n^{(\beta)}$ ($\beta = 1, 2, 4$) is given by

$$\frac{\Gamma(1+\beta/2)^n}{(2\pi)^n\Gamma(1+\beta n/2)}\prod_{1\leq j\leq k\leq n}|e^{i\theta_j}-e^{i\theta_k}|^{\beta}.$$

Probability spaces for three classes of random matrices $V_n^{(\beta)}$ ($\beta=1,2,4$) are called Dyson's circular ensembles.

Circular β -ensembles

Circular β -ensembles $C\beta E_n$ with general $\beta > 0$

Space:
$$\{(e^{i\theta_1},\ldots,e^{i\theta_n})\}=(S^1)^{\times n}\cong [0,2\pi)^{\times n}$$
.

Density:
$$\frac{\Gamma(1+\beta/2)^n}{(2\pi)^n\Gamma(1+\beta n/2)}\prod_{1\leq j< k\leq n}|e^{i\theta_j}-e^{i\theta_k}|^\beta.$$

- This is the eigenvalue density for circular orthogonal/unitary/symplectic ensembles for $\beta=1/2/4$, respectively.
- Matrix expression $V_n^{(\beta)}$ for general $\beta > 0$: [Killip–Nenciu (2004)]

$$Z_n^{(\beta)} = (e^{i\theta_1}, \dots, e^{i\theta_n})$$
: A random vector taken from the C β E.

We are interested in "traces of powers"

$$p_r(Z_n^{(\beta)}) = \sum_{j=1}^n e^{ir\theta_j} = \operatorname{Tr}\left[(V_n^{(\beta)})^r \right] \qquad (r = 1, 2, 3, \dots).$$

Introduction

2 Diaconis-Shahshahani Theorem for CUE

Moment inequalities for traces

4 CLT for COE and CSE

Partitions

Partition of integer

- A partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$ of $m \in \mathbb{N}$ is a weakly-decreasing sequence of positive integers with $|\lambda| = \sum_{j=1}^{l} \lambda_j = m$.
- We denote by $\ell(\lambda)$ the length of λ .
- For each positive integer r, we denote by $m_r(\lambda)$ the multiplicity of r in λ :

$$m_r(\lambda) = |\{j \mid 1 \leq j \leq l, \ \lambda_j = r\}|.$$

Note
$$m = |\lambda| = \sum_{r>1} r m_r(\lambda)$$
 and $\ell(\lambda) = \sum_{r>1} m_r(\lambda)$.

- We often write $\lambda = (1^{m_1(\lambda)}, 2^{m_2(\lambda)}, \dots)$.
- Put

$$z_{\lambda} = \prod_{r \geq 1} r^{m_r(\lambda)} m_r(\lambda)!.$$

Example: If $\lambda = (4, 2, 2, 1, 1, 1)$, then $|\lambda| = 11$, $\ell(\lambda) = 6$, and $\lambda = (1^3, 2^2, 4^1)$. Moreover, $z_{\lambda} = (1^3 \cdot 3!) \times (2^2 \cdot 2!) \times (4^1 \cdot 1!) = 192$.

Products of traces

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_I)$ be a partition. For a (random) matrix U, put

$$p_{\lambda}(U) = \prod_{i=1}^{l} p_{\lambda_j}(U), \qquad p_r(U) = \operatorname{Tr} U^r.$$

For a (random) vector $Z = (Z_1, \ldots, Z_n)$, put

$$p_{\lambda}(Z) = \prod_{j=1}^{l} p_{\lambda_j}(Z), \qquad p_r(Z) = \sum_{j=1}^{n} Z_j^r.$$

Example: If $\lambda = (4, 2, 2, 1, 1, 1) = (1^3, 2^2, 4^1)$ then

$$p_{\lambda}(U) = (\text{Tr } U^4)(\text{Tr } U^2)^2(\text{Tr } U)^3,$$

$$p_{\lambda}(Z_n^{(\beta)}) = p_4(Z_n^{(\beta)})p_2(Z_n^{(\beta)})^2p_1(Z_n^{(\beta)})^3, \quad p_r(Z_n^{(\beta)}) = \sum_{j=1}^n e^{ir\theta_j}.$$

Diaconis-Shahshahani Theorem

Let U_n be an $n \times n$ CUE matrix. Let μ and ν be partitions. The quantity $\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right]$ is a mixed moment for a family of random variables $\mathrm{Tr}(U_n^j)$, $\mathrm{Tr}(U_n^{-j})$ $(j=1,2,\dots)$.

Theorem 1. [Diaconis-Shahshahani (1994)], [Diaconis-Evans (2001)]

For $n \geq |\mu| \vee |\nu|$,

$$\mathbb{E}\left[\rho_{\mu}(U_n)\overline{\rho_{\nu}(U_n)}\right]=\delta_{\mu\nu}z_{\mu}.$$

This is independent of n.

Example: If $\mu = \nu = (4, 2, 2, 1, 1, 1)$ and $n \ge 11$ then $\mathbb{E}[|p_{\mu}(U_n)|^2] = 192$. If $\mu \ne \nu$ and $n \ge |\mu| \lor |\nu|$ then $\mathbb{E}\left[p_{\mu}(U_n)\overline{p_{\nu}(U_n)}\right] = 0$.

CLT for CUE

Complex normal random variables

Let $\xi_1^{\mathbb{C}}, \xi_2^{\mathbb{C}}, \dots, \xi_k^{\mathbb{C}}$ be independent standard complex normal random variables. Let $\mu = (1^{a_1}, 2^{a_2}, \dots, k^{a_k})$ and $\nu = (1^{b_1}, 2^{b_2}, \dots, k^{b_k})$ be partitions. Then

$$\mathbb{E}\left[\prod_{j=1}^k (\sqrt{j}\xi_j^{\mathbb{C}})^{a_j} \overline{(\sqrt{j}\xi_j^{\mathbb{C}})^{b_j}}\right] = \delta_{\mu\nu} z_{\mu}.$$

Corollary. [Diaconis-Shahshahani (1994)], [Diaconis-Evans (2001)]

Let U_n be an $n \times n$ CUE matrix. For each $k \ge 1$,

$$(\mathsf{Tr}(U_n), \mathsf{Tr}(U_n^2), \dots, \mathsf{Tr}(U_n^k)) \quad \xrightarrow{\mathsf{dist.}} \quad (\sqrt{1}\xi_1^{\mathbb{C}}, \sqrt{2}\xi_2^{\mathbb{C}}, \dots, \sqrt{k}\xi_k^{\mathbb{C}})$$

as $n \to \infty$.

$C\beta E$ case – prologue –

Question.

Extend the Diaconis–Shahshahani theorem to the $C\beta E$ with general $\beta>0.$

Let $Z_n^{(\beta)}$ be a random vector taken in $C\beta E_n$. Put $\alpha = 2/\beta$.

Example: Consider the average of $|p_2(Z_n^{(\beta)})|^2$. Note that $|p_2(Z_n^{(\beta=2)})|^2 = |\operatorname{Tr}(U_n^2)|^2$. For $n \geq 2$,

$$\mathbb{E}\left[|p_{2}(Z_{n}^{(\beta)})|^{2}\right] = \frac{2\alpha n(n^{2} + 2(\alpha - 1)n + \alpha^{2} - 3\alpha + 1)}{(n + \alpha - 1)(n + 2\alpha - 1)(n + \alpha - 2)}$$

$$= \begin{cases} \frac{4(n^{2} + 2n - 1)}{(n + 1)(n + 3)} & \text{if } \beta = 1 \text{ i.e. } \alpha = 2 \text{ (COE case)} \\ 2 & \text{if } \beta = 2 \text{ i.e. } \alpha = 1 \text{ (CUE case)} \\ \frac{4n^{2} - 4n - 1}{(2n - 1)(2n - 3)} & \text{if } \beta = 4 \text{ i.e. } \alpha = 1/2 \text{ (CSE case)}. \end{cases}$$

$C\beta E$ case – prologue –

Example: For $n \ge 2$,

$$\mathbb{E}\left[p_2(Z_n^{(\beta)})\overline{p_{(1,1)}(Z_n^{(\beta)})}\right] = \frac{2\alpha^2(\alpha-1)n}{(n+\alpha-1)(n+2\alpha-1)(n+\alpha-2)}$$

$$= \begin{cases} \frac{8}{(n+1)(n+3)} & \text{if } \beta=1 \text{ i.e. } \alpha=2 \text{ (COE case)} \\ 0 & \text{if } \beta=2 \text{ i.e. } \alpha=1 \text{ (CUE case)} \\ \frac{-1}{(2n-1)(2n-3)} & \text{if } \beta=4 \text{ i.e. } \alpha=1/2 \text{ (CSE case)}. \end{cases}$$

Thus, except $\beta=2$, even if $n\geq |\mu|\vee |\nu|$ and $\mu\neq \nu$, the moments

$$\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right] \text{ can be nonzero. In general, } \mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]$$
 would be quite complicated.

Strategy

We give up on the fulfillment of the explicit expression for

$$\mathbb{E}\left[p_{\mu}(Z_n^{(\beta)})\overline{p_{\nu}(Z_n^{(\beta)})}\right].$$

Introduction

2 Diaconis-Shahshahani Theorem for CUE

3 Moment inequalities for traces

4 CLT for COE and CSE

Main Result 1

Let $\beta > 0$ and set $\alpha = 2/\beta$. Let m be a positive integer. Define two constants

$$A = A(n, m, \alpha) = \left(1 - \frac{|\alpha - 1|}{n - m + \alpha} \delta(\alpha \ge 1)\right)^{m},$$

$$B = B(n, m, \alpha) = \left(1 + \frac{|\alpha - 1|}{n - m + \alpha} \delta(\alpha < 1)\right)^{m}.$$

Remark: $A \leq B$. A(n, m, 1) = B(n, m, 1) = 1.

Theorem 2. [Jiang-M (2014)]

(i) If μ is a partition of m and $n \geq m$, then

$$A \leq \frac{\mathbb{E}\left[|p_{\mu}(Z_n^{(\beta)})|^2\right]}{\alpha^{\ell(\mu)}z_{\mu}} \leq B.$$

Main Result 1

(ii) If μ and ν are distinct partitions of m and $n \geq m$, then

$$\left|\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]\right| \leq (|A-1| \vee |B-1|) \cdot \sqrt{\alpha^{\ell(\mu)+\ell(\nu)}z_{\mu}z_{\nu}}.$$

(iii) If μ and ν are partitions with $|\mu| \neq |\nu|$, then

$$\mathbb{E}\left[p_{\mu}(Z_n^{(\beta)})\overline{p_{\nu}(Z_n^{(\beta)})}\right]=0.$$

• Substituting $\beta=2$ reduces our theorem to the Diaconis–Shahshahani theorem $\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta=2)})\overline{p_{\nu}(Z_{n}^{(\beta=2)})}\right]=\delta_{\mu\nu}z_{\mu}.$

Main Result 1

If we evaluate constants A, B, we obtain the following corollary.

Corollary.

(i) If μ is a partition of m and $n \geq m$, then

$$\left|\mathbb{E}\left[|p_{\mu}(Z_{n}^{(\beta)})|^{2}\right] - \alpha^{\ell(\mu)}z_{\mu}\right| \leq 6|\alpha - 1|\frac{m}{n}\alpha^{\ell(\mu)}z_{\mu}.$$

(ii) If μ and ν are distinct partitions of m and $n \geq m$, then

$$\left| \mathbb{E}\left[p_{\mu}(Z_n^{(\beta)}) \overline{p_{\nu}(Z_n^{(\beta)})} \right] \right| \leq 6|\alpha - 1| \frac{m}{n} \sqrt{\alpha^{\ell(\mu) + \ell(\nu)} z_{\mu} z_{\nu}}.$$

In particular, for μ, ν fixed,

$$\lim_{n\to\infty}\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right]=\delta_{\mu\nu}\left(\frac{2}{\beta}\right)^{\ell(\mu)}z_{\mu}.$$

CLT for $C\beta E$

Corollary.

Let $\xi_1^{\mathbb{C}}, \xi_2^{\mathbb{C}}, \ldots$ be independent standard complex normal random variables. For each k > 1, the random vector

$$(p_1(Z_n^{(\beta)}), p_2(Z_n^{(\beta)}), \ldots, p_k(Z_n^{(\beta)}))$$

converges in distribution to

$$(\sqrt{\frac{2\cdot 1}{\beta}}\xi_1^{\mathbb{C}}, \sqrt{\frac{2\cdot 2}{\beta}}\xi_2^{\mathbb{C}}, \dots, \sqrt{\frac{2k}{\beta}}\xi_k^{\mathbb{C}})$$

as $n \to \infty$.

Remark that this corollary is not new.

Outline of the proof of Theorem 2

A main tool is the Jack polynomial $J_{\lambda}^{(\alpha)}$, which is a family of multivariate orthogonal polynomials with Jack parameter α .

$$\mathbb{E}\left[J_{\mu}^{(2/\beta)}(Z_{n}^{(\beta)})\overline{J_{\nu}^{(2/\beta)}(Z_{n}^{(\beta)})}\right] = \delta_{\mu\nu} \cdot \delta(\ell(\mu) \leq n) \cdot C_{\lambda}(2/\beta) \cdot \mathcal{N}_{\lambda}^{2/\beta}(n),$$

where

$$C_{\lambda}(\alpha) = \prod_{(i,j)\in\lambda} (\alpha(\lambda_i - j) + \lambda'_j - i + 1)(\alpha(\lambda_i - j) + \lambda'_j - i + \alpha),$$

$$\mathcal{N}_{\lambda}^{\alpha}(n) = \prod_{(i,j)\in\lambda} \frac{n + (j-1)\alpha - (i-1)}{n + j\alpha - i}. \qquad (\mathcal{N}_{\lambda}^{\alpha=1}(n) \equiv 1)$$

Note: $(\beta = 2)$

$$\mathbb{E}[s_{\mu}(U_n)\overline{s_{\nu}(U_n)}] = \delta_{\mu\nu} \cdot \delta(\ell(\mu) \leq n),$$

where s_{λ} is the Schur polynomial.

Outline of the proof of Theorem 2

Expansion of the power-sum p_{μ} in Jack polynomials:

$$p_{\mu} = \alpha^{\ell(\mu)} z_{\mu} \sum_{\lambda: |\lambda| = |\mu|} \frac{\theta_{\mu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} J_{\lambda}^{(\alpha)},$$

where $\theta_{\mu}^{\lambda}(\alpha)$ is the Jack character.

Proposition (Algebraic Expression).

If μ and ν are partitions of \emph{m} , then

$$\mathbb{E}\left[p_{\mu}(Z_{n}^{(\beta)})\overline{p_{\nu}(Z_{n}^{(\beta)})}\right] = \alpha^{\ell(\mu) + \ell(\nu)} z_{\mu} z_{\nu} \sum_{\substack{\lambda: |\lambda| = m, \\ \ell(\lambda) \leq n}} \frac{\theta_{\mu}^{\lambda}(\alpha)\theta_{\nu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} \mathcal{N}_{\lambda}^{\alpha}(\mathbf{n}).$$

Evaluation of $\mathcal{N}^{\alpha}_{\lambda}(n)$

Recall

$$\mathcal{N}_{\lambda}^{\alpha}(n) = \prod_{(i,j)\in\lambda} \frac{n + (j-1)\alpha - (i-1)}{n + j\alpha - i}.$$

$$A(n, m, \alpha) = \left(1 - \frac{|\alpha - 1|}{n - m + \alpha}\delta(\alpha \ge 1)\right)^{m},$$

$$B(n, m, \alpha) = \left(1 + \frac{|\alpha - 1|}{n - m + \alpha}\delta(\alpha < 1)\right)^{m}.$$

Lemma (Elementary estimation).

Assume $n \geq m$. For any partition λ of m,

$$A(n, m, \alpha) \leq \mathcal{N}_{\lambda}^{\alpha}(n) \leq B(n, m, \alpha),$$

$$|\mathcal{N}_{\lambda}^{\alpha}(n) - 1| \leq |A(n, m, \alpha) - 1| \vee |B(n, m, \alpha) - 1|.$$

Introduction

2 Diaconis-Shahshahani Theorem for CUE

Moment inequalities for traces

4 CLT for COE and CSE

Linear combination of traces $(\beta = 2)$

Let $\xi^{\mathbb{C}}$ be a complex standard normal random variable.

Theorem. [Diaconis-Evans (2001)]

Let U_n be an $n \times n$ CUE matrix. Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying $\sum_{j=1}^{\infty} j|a_j|^2 = \sigma^2 < \infty$. Then, as $n \to \infty$,

$$\sum_{j=1}^{\infty} a_j p_j(U_n) = \sum_{j=1}^{\infty} a_j \operatorname{Tr}[(U_n)^j] \xrightarrow{\operatorname{dist.}} \sigma \xi^{\mathbb{C}}.$$

Note: Diaconis-Evans obtained a slightly stronger version.

Key lemma (easy proof).

$$\mathbb{E}\left[|p_m(U_n)|^2\right] = m \wedge n$$
 for all positive integers m, n .

Linear combination of traces $(\beta = 1)$

Theorem 3. [Jiang-M (2014)] CLT for COE

Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying

$$\sum_{j=1}^{\infty} j|a_j|^2 = \sigma^2 < \infty.$$

Then, as $n \to \infty$,

$$\sum_{j=1}^{\infty} a_j \rho_j(Z_n^{(\beta=1)}) \quad \xrightarrow{\mathsf{dist.}} \quad \sqrt{2} \sigma \xi^{\mathbb{C}}.$$

Key lemma (quite complicated proof).

There exists a universal constant K such that

$$\mathbb{E}\left[|p_m(Z_n^{(\beta=1)})|^2\right] \le Km$$
 for all positive integers m, n .

Linear combination of traces $(\beta = 4)$

Theorem 4. [Jiang-M (2014)] CLT for CSE

Let $\{a_j\}_{j=1}^{\infty}$ be a sequence of complex numbers satisfying

$$\sum_{j=1}^{\infty} \frac{(j \log j)}{|j|^2} |a_j|^2 < \infty$$
. Set $\sigma^2 = \sum_{j=1}^{\infty} j |a_j|^2$. Then, as $n \to \infty$,

$$\sum_{j=1}^{\infty} a_j p_j(Z_n^{(\beta=4)}) \quad \xrightarrow{\text{dist.}} \quad \frac{1}{\sqrt{2}} \sigma \xi^{\mathbb{C}}.$$

Key lemma (quite complicated proof).

There exists a universal constant K such that

$$\mathbb{E}\left[|p_m(Z_n^{(\beta=4)})|^2\right] \leq Km\log m$$
 for all positive integers m,n .

Remarks and Future works

- ① $(\beta = 4)$ It does not seem that we can remove $\log m$ in the evaluation $\mathbb{E}\left[|p_m(Z_n^{(\beta=4)})|^2\right] \leq Km\log m$. In fact, we proved that there exist universal constants K_1, K_2 such that (if n = m) $K_1m\log m \leq \mathbb{E}\left[|p_m(Z_m^{(\beta=4)})|^2\right] \leq K_2m\log m$.
- ② (general $\beta > 0$) Obtain the CLT for $\sum_{j=1}^{\infty} a_j p_j(Z_n^{(\beta)})$ $(\to \sqrt{\frac{2}{\beta}} \sigma \xi^{\mathbb{C}})$.
- (general $\beta > 0$) Consider the convergence rate. Kurt Johansson (1997) obtained the CUE case.

Introduction

2 Diaconis-Shahshahani Theorem for CUE

3 Moment inequalities for traces

4 CLT for COE and CSE

Thank you for listening.

松本詔 (鹿児島大)

松本 詔 (鹿児島大) CLTs for traces in CβE 2014.12.19. 27 / 27