Pfaffian expressions for correlation functions of zeros of a Gaussian power series

Sho Matsumoto (Nagoya University)

This is a joint work with Tomoyuki Shirai (Kyushu University).

The zero distributions for Gaussian analytic functions have been studied for many years. Kac [I] gives an explicit expression for the probability density function of real zeros of a random polynomial $p_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$, where a_{k} are i.i.d. real standard Gaussian random variables. Peres and Virág [2] study a random power series $f_{\mathbb{C}}(z)=\sum_{k=0}^{\infty} \zeta_{k} z^{k}$, where ζ_{k} are i.i.d. complex standard Gaussian random variables, and show that the zero distribution of $f_{\mathbb{C}}$ forms a determinantal point process associated with the Bergman kernel $K(z, w)=\frac{1}{(1-z \bar{w})^{2}}$.

We here consider a random power series

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k},
$$

where a_{k} are i.i.d. real standard Gaussian random variables. The random function f is a limiting version of Kac polynomial p_{n} and a real version of f_{C}. From the Borel-Cantelli lemma, we see that the radius of convergence of f is almost surely 1 . Furthermore, the restriction $\{f(t)\}_{t \in I}$ to the interval $I=(-1,+1)$ becomes a Gaussian process with covariance $\mathbb{E}[f(s) f(t)]=\frac{1}{1-s t}$.

Our main results state that the zero distribution of f forms a Pfaffian point process. Recall the definition of the Pfaffian. For a $2 n \times 2 n$ skew-symmetric matrix $B=$ $\left(b_{i j}\right)_{1 \leq i, j \leq 2 n}$, the Pfaffian of B is

$$
\operatorname{Pf} B=\sum_{\sigma} \epsilon(\sigma) b_{\sigma(1) \sigma(2)} b_{\sigma(3) \sigma(4)} \cdots b_{\sigma(2 n-1) \sigma(2 n)}
$$

summed over all permutations σ of $1,2, \ldots, 2 n$ satisfying $\sigma(2 i-1)<\sigma(2 i)(i=1,2, \ldots, n)$ and $\sigma(1)<\sigma(3)<\cdots<\sigma(2 n-1)$. Here $\epsilon(\sigma)$ is the signature of σ.

Theorem 1. Let $\rho_{n}^{r}\left(t_{1}, \ldots, t_{n}\right)$ be the correlation function for real zeros of f. For $t_{1}, t_{2}, \ldots, t_{n} \in$ I, we have

$$
\rho_{n}^{\mathrm{r}}\left(t_{1}, \ldots, t_{n}\right)=\pi^{-n} \operatorname{Pf}\left(\mathbb{K}\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq n} .
$$

Here each $\mathbb{K}(s, t)(s, t \in I)$ is a 2×2 matrix and $\operatorname{Pf}\left(\mathbb{K}\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq n}$ is the Pfaffian of the $2 n \times 2 n$ skew-symmetric matrix $\left(\mathbb{K}\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq n}$. The matrix kernel $\mathbb{K}(s, t)$ is defined as follows:

$$
\mathbb{K}(s, t)=\left(\begin{array}{ll}
\mathbb{K}_{11}(s, t) & \mathbb{K}_{12}(s, t) \\
\mathbb{K}_{21}(s, t) & \mathbb{K}_{22}(s, t)
\end{array}\right)
$$

and

$$
\begin{array}{ll}
\mathbb{K}_{11}(s, t)=\frac{s-t}{\sqrt{\left(1-s^{2}\right)\left(1-t^{2}\right)}(1-s t)^{2}}, & \mathbb{K}_{12}(s, t)=\sqrt{\frac{1-t^{2}}{1-s^{2}}} \frac{1}{1-s t}, \\
\mathbb{K}_{21}(s, t)=-\sqrt{\frac{1-s^{2}}{1-t^{2}} \frac{1}{1-s t},} & \mathbb{K}_{22}(s, t)=\operatorname{sgn}(t-s) \arcsin \frac{\sqrt{\left(1-s^{2}\right)\left(1-t^{2}\right)}}{1-s t}
\end{array}
$$

Here $\operatorname{sgn} t=+1$ for $t>0 ; \operatorname{sgn} t=-1$ for $t<0$; and $\operatorname{sgn} 0=0$.
Theorem 2. Let $\rho_{n}^{\mathrm{c}}\left(z_{1}, \ldots, z_{n}\right)$ be the correlation function for complex zeros of f. For complex numbers z_{1}, \ldots, z_{n} satisfying $\left|z_{i}\right|<1$ and $\Im\left(z_{i}\right)>0$, we have

$$
\rho_{n}^{\mathrm{c}}\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{(\pi \sqrt{-1})^{n}} \prod_{j=1}^{n} \frac{1}{\left|1-z_{j}^{2}\right|} \cdot \operatorname{Pf}\left(\mathbb{K}^{\mathrm{c}}\left(z_{i}, z_{j}\right)\right)_{1 \leq i, j \leq n}
$$

with

$$
\mathbb{K}^{c}(z, w)=\left(\begin{array}{cc}
\frac{z-w}{1-z w} & \frac{z-\bar{w}}{1-z \bar{w}} \\
\frac{\bar{z}-w}{1-\bar{z} w} & \frac{\bar{z}-\bar{w}}{1-\bar{z} \bar{w}}
\end{array}\right)
$$

As corollaries of our proof of Theorem \mathbb{D}, we obtain the following Pfaffian expressions for absolute value moments and sign moments.

Theorem 3. For distinct $t_{1}, t_{2}, \ldots, t_{n} \in I$,

$$
\mathbb{E}\left[\left|f\left(t_{1}\right) f\left(t_{2}\right) \cdots f\left(t_{n}\right)\right|\right]=\left(\frac{2}{\pi}\right)^{n / 2}(\operatorname{det} \Sigma)^{-\frac{1}{2}} \operatorname{Pf}\left(\mathbb{K}\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq n}
$$

with $\Sigma=\left(\frac{1}{1-t_{i} t_{j}}\right)_{1 \leq i, j \leq n}$.
Theorem 4. For distinct $t_{1}, t_{2}, \ldots, t_{2 n} \in I$,
$\mathbb{E}\left[\operatorname{sgn} f\left(t_{1}\right) \operatorname{sgn} f\left(t_{2}\right) \cdots \operatorname{sgn} f\left(t_{2 n}\right)\right]=\left(\frac{2}{\pi}\right)^{n} \prod_{1 \leq i<j \leq 2 n} \operatorname{sgn}\left(t_{j}-t_{i}\right) \cdot \operatorname{Pf}\left(\mathbb{K}_{22}\left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq 2 n}$.

References

[1] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314-320.
[2] Y. Peres and B. Virág, Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process, Acta Math. 194 (2005), 1-35.

