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@ Introduction
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Random matrix

Consider a random matrix
X = (xijh<ijen-

(ex. Gaussian matrix, Wishart matrix, Haar-distributed unitary
matrix, etc.)

Question
How can we compute the following mixed moments ?

X, jy Xiojy * * * Xinju]

E[XileXiZjZ * Xinjn Xk h Xkl 'an/n]
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@ Gaussian matrix: well-known Wick formula.
If Z1, 2>, Z3, Z4 are Gaussian r.v., then

]E[Zl ZzZ3Z4] — ]E[Zl Zz]lE[Z3 Z4]
+ E[Z, Z3|E[ 2, Z4] + B[ Z, Z,|E[ 2, Z5).

@ central complex Wishart matrix and its inverse matrix:
[Graczyk-Letac-Massam 03].

@ central real Wishart matrix and its inverse matrix:
[Graczyk-Letac-Massam 05], [M 11].

@ noncentral Wishart matrix: [Kuriki-Numata 10].
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o Haar-distributed unitary matrix: [Samuel 80], [Weingarten
78], [Collins 03]. We call their technique Weingarten calculus.

o Haar-distributed orthogonal matrix: [CoIIins—S'niady 06],
[Collins-M 09] — Today's topic 1.

@ Dyson’s circular ensembles:

o circular unitary ensemble (CUE) = Unitary group with Haar

measure.
e circular orthogonal ensemble (COE) — Today's topic 2.
o circular symplectic ensemble (CSE) — in future.
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© Haar-distributed orthogonal matrix
@ Question 1
@ Perfect matching
@ Collins—Sniady theorem
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Haar-distributed orthogonal matrix

O(N) = {N x N real orthogonal matrices}
There exists a unique probability measure dR on O(N) such that
/ F(RiRRy)dR = / F(R)dR
O(N) O(N)

for all Ry, R, € O(N) and integrable functions f.
We call dR the Haar measure for O(N).

Consider the probability space ( O(N), Borel, dR). The coordinate
functions

rj := the (/,j)-entry of a Haar-distributed random matrix R

are random variables.
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Our first question

Let R = (rjj)1<ij<n be a Haar-distributed orthogonal matrix.

Question 1
How do we compute the following moments 7

E[rhh Fijp * * rikfk] = / Fivji Finjp * * * Figjk dR
O(N)

where i, ... ik, J1,-- -5k € [N] :=={1,2,..., N}.

Note that E[r; j ri,j, - - - rij,] vanishes if k is odd.
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Perfect matchings

Let M (2k) be the set of all perfect matchings

m = {{m(1), m(2)}, {m(3), m(4)},..., {m(2k — 1), m(2k)}}

on [2k] = {1,2,...,2k}. Here we write as
m(2i—1) <m(2/) (1 <i<k)and m(1) <m(3) <--- <m(2k—1).

Example. M (4) consists of three elements
{{1,2},{3,4}},  {{L.3},{2,4}}, {{1,4},{2,3}}.
Each m € M(2k) can be identified with a permutation

1 2 3 4 ... 2k — 1 2k S
(m(l) m(2) m(3) m(4) - m(2k —1) m(2k)> € Ok-

Thus M(2k) C Sy
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(2ol -1 5 3 4

{{1.3},{2,4},{5.6}} = G :

{{1,6},{2,5},{3,4}} = G 2
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CoIIins—éniady theorem

Theorem [Collins-Sniady (2006)]

Let R = (rjj)1<ij<n be a Haar-distributed orthogonal matrix. For

sequences i= (il, socoy i2k): j = (jl; 500 7_j2k) in [N]XZk,
O(N) _
E[rhhrizjz T rizkak] = Z 6111( )5 ( )Wg ) (m ln)'
m,neM(2n)
Here

) 1 if i, = iy for all matchings {p, q} in m,
Om(i) :== .
0 otherwise.

ng(N) is a function on Sy, called the orthogonal Weingarten
function. We will give the definition later.
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Example 1

Let R = (rjj)1<ij<n be a Haar-distributed orthogonal matrix and
consider E[r121 r222] = E[rlll’llrzzrzz].

(iyooyig) =(1,1,2,2). (1,---,Ja) = (1,1,2,2).
If 0m((1,1,2,2)) =1, then m € M(4) must be

E[r2 r2) =Wgg ™M (m~tm) = Wes ™ (ids)
B N+1
NN —-1)(N+2)
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Example 2

Consider E[I’l 1hoh1 r22].

i=(1,1,2,2) and j = (1,2,1,2).
If 0m(i) =1 and 6,(j) = 1, then m and n must be

A R

1 1

N
N
=
N
[
N

respectively.
Hence

-1
NN —1)(N+2)

E[r1n2nirs] = Wgzo(N)(m_ln) =
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Example 3, 4

Consider E[r,].
i=j=1(2,2,2,2), and so0 0,4(i) = 1 for any m € M (4).

Hence 3
o)
Elrh]l= Y We; M(mn) = NN +2)
m,neM(4)

Consider E[r,; ri2].

=(1,1,1,1),j=(1,1,1,2).
There exist no n € M(4) such that d,(j) = 1.
Hence

]E[r131 r12] =0.
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a Orthogonal Weingarten function
@ First definition
@ Second definition
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Graph associated with permutations

For each permutation o € Sy,, we consider the graph (o) defined as
follows:

Vertex set {1,2,...,2k};

Edges {c(2i — 1),0(2)},{2i —1,2i} i=1,2,... k.

Let x(0) be the number of connected components in (o).

Example. Let 0 = (32238718) € S5. Then k(o) = 2.

g 1 h
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Let GkO(N) be the function on S, defined by
GkO(N)(O') — NK(O’).
Consider the convolution product for functions on Sy:

(f xg)(o ZfO'T (0 € Sx).

TESHk

Definition (due to [Collins—Sniady (2006)])

The orthogonal Weingarten function Wg,?(N) is, by definition, the
(pseudo-)inverse element of Gko(N)

product.

with respect to the convolution

Remark. We will give more explicit expression for ng( ) later.
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Hyperoctahedral group

The hyperoctahedral group Hy is the subgroup of Sy, generated by

(2i—12i), 1<i<k
(2i =12/ —1)(2i 2j), 1<i<j<k

A partition A = (A1, A2, ..., A;) of k is a sequence of positive integers
such that /

AZXez 2N >0, k=) A

i=1
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Some symbols

Let A = (A1, Az, ..., \/) be a partition of k. Define

I A

Ny =T]]JN+2i—i-1).

i=1 j=1
The zonal spherical function for the Gelfand pair (S, H) is defined
by
w(o) == (2Kk1)~ Z X (00), (0 € Sa)

CEH

where x?* is the irreducible character of S, associated with
2\ = (2)\1, 2)\2, ey 2)\/)

f2/\ ::XZA(idSn)
=+ of standard Young tableaux of shape 2.
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Second definition

Definition & Theorem (due to [Collins-M (2009)])
Define

2kk! f2A

@ 2 gm0

W "(0) =

summed over all partitions A of k. This definition coincides with the
First definition.

Example (k =2). If 0 = (2 3) € &4,

1 1-1

O(N 2-(=3) —1
Wgz( )(U):§<LN(N+2)J L/V(N 1)) N(N—!—Q)(N—l)'
A:‘fz) /\:v 1)
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@ Circular Orthogonal Ensemble
@ Question 2
@ Theorem for COE
@ Applications
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Circular Orthogonal Ensemble

COE(N) = {N x N symmetric unitary matrices}
There exists a unique probability measure dV on COE(N) such that
/ fF(W'VW)dV = / f(V)dv
COE(N) COE(N)

for all N x N unitary matrix W and integrable functions f.

Consider the probability space ( COE(N), Borel, dV'). We call it the
Circular Orthogonal Ensemble (COE) and V a COE matrix.
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Circular ensembles

There are three classes of circular ensembles:

COE (circular orthogonal ensemble): symmetric unitary matrices
CUE (circular unitary ensemble): unitary matrices

CSE (circular symplectic ensemble): self-dual unitary quaternion
matrices

It is well known that eigenvalue density function for a
COE/CUE/CSE matrix is given by

Cup ] eV — e TP

1<i<j<N

with 8 = 1,2, 4 respectively. The constant Cyz is fixed by
normalization.
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Our second question

Let V = (Vij)lﬁiJSN be a COE matrix.

How do we compute the following moments 7

E[Vh ioVizia =" " Viog_viok Vjrjo Vizja * ° ijk—ljzk]

where i, ..., bk J1,- -, J2k € [N]

Note that E[v, i, Visi, - * - Viye 1ine Viea Visja * * Viarujar] V@Nishes unless
k=1.
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Theorem

Theorem [M (2011 preprint) |

Let V = (vjj)i<ij<n be a COE matrix. For sequences
i= (il, ooog i2k), j = (jl; Ce . ;j2k) in [N]XZk,

o O(N+1)
]E[Vil i2Vizia " Ving_viok Yjrje Vizja *° ijk—ljzk] - E : ng (0)7
0ESoi
=7

where the sum runs over permutations o € S, satisfying
=1 = (loq), Io(2)> - - - » Io(2k))

and Wg,?(NH) is the orthogonal Weingarten function with parameter
N +1 (not N).
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Example.
E[V12 V34V13V24] (i = (17 2;374)7 j = (1: 3;2:4))
. O(N+1) 1 2 3 4 _ -1
=Wea ((1 32 4 N(N + 1)(N +3)
Example.
]E[|V11|4] :]E[Vll V11V11V11] (i :j = (1a171a1))
3
_ W O(N+1 .
=2 We, ~ (IN+1)(N +3)
0ESy
Example.

]E[V122 Vi1 V12] = 0

because j = (1,1,1,2) is not a rearrangement of i = (1,2,1,2).

Sho MATSUMOTO (Nagoya) Moments of RM 17 February 2012 26 / 38



Example.
Elvi,viva]  (i=(1,21, 2), i=(11,2,2)
_EW G N(N+1)(N+3)’
where L= {(153%), (3134), (1332), (3132)}
Example.

]E[V12 V34 V56 V78 V18 V23 Va5 V67]

O(N+1
=Wg " (13345889)

B —5N — 11
(N =2)(N —1)N(N + 1)(N +2)(N +3)(N +5)(N +7)°
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Applications

Corollary 1 (known fact)
Let v;; be a diagonal entry of an N x N COE matrix. Then, for k > 1,

2k k!
E[|vi|*] = :
(N+1)(N+3)---(N+2k—1)
Proof.
E[|vii|*]
N+1) 2 kl )\
= Wey .ZCINHZ ()
0E€So UESZk
2 2k k1
e C(N+1)" (N+1)(N+3)---(N+2k—1)
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Applications

Corollary 2 (new result)
Let v; be an off-diagonal entry of an N x N COE matrix. Then, for
k>1,

k!
NN+1)(N+2)---(N+k—-2)- (N+2k—1)

Ef|v; |*] =

Proof. i=j=(i,j,i,j,...,i,)).
N 1
Envufk]—zw o),

summed over all o € Sy, each of which permutates odd numbers
and even numbers. The computation in this case is more complicated
than Corollary 1. But we can obtain the claim.
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© Asymptotics and Combinatorics
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Let R N =1,2,..., be a sequence of Haar-distributed orthogonal
matrices of size N. We would like to know the asymptotics

Ny ... (V)
IIE1:["1'1]'1 riZk:jZkL N — oo
where il; Ceey i2k,_j1,_j2, TN 7_j2k are fixed.

For example, we have already known

3 3 6 12 _
B =y~ e O )
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To know the asymptotic behavior of orthogonal matrix integrals, we
need to know the asymptotic behavior of the orthogonal Weingarten
function.

However, the expression (second definition)

o(N 2k k| 2

(O’ € S2k)
Ak

is not( s)uitable for our purpose. We need the third expression for
Wg,? v,
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Asymptotics

Theorem [M (2011)]
Fix 0 € Sy,. Expand as

O(N i Nkm

m=0

Then an,(0) has the following combinatorial interpretation (see the
next slide). In particular,

@ all a,,(o) are non-negative integers.
® ap(o) =0 unless m > k — k(o).
o If m= k — x(0), then a,,(c) = Hji‘? Cat,,;_;. Here

Cat, = % is the Catalan number, and p = (1, pip,...) is a
partition of k, determined by o.
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Combinatorial interpretation

Let k,m > 1 and 0 € Syc. The coefficient a,,(c) is the number of

sequences (s, t1, Sy, by, - . -, Sm, tm) Of positive integers satisfying
@ tiareodd,and 1 < t; < L < --- < t, <2k — 1.
@ s5; < tj.

@ Let p:=(s1t1) - (Smtm) be the permutation in Sy, defined as
the product of transpositions (s; t;). Then two associated perfect
matchings

{{r(1), p(2)},{p(3), p(4)}, .., {p(2k — 1), p(2K)}},
{{o(1),0(2)},{o(3),0(4)},.... {0(2k = 1),0(2k)} }

coincide.
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Recall that

E[rfy - riad =Wl ™ (idar).
]E[| VioVag * V2k—1,2k|2] :Wg;?(NH)(idM)-
Here R = (r;) is an N x N Haar-distributed orthogonal matrix and
V = (v;) is an N x N COE matrix.

2k k! £2A
WgfM (idy,) =
‘ (2k)! <= C3(N)
=N=%+ k(k —1)N*2 — k(k — 1)N=*=3 1 O(N*=*)
as N — oo.
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We have established the systematic method of the computations for
moments of two random matrices.

Let i = (i,...,0%), j= (i,...,jox) be two sequences in [N]*2k.

For a Haar-distributed orthogonal matrix R = (rjj)i<i j<n.

E[rhh Fipjy = rizkak] = Z 5m( )5 ( )WgO(N (miln)-

m,neM(2n)

For a COE matrix V = (Vij)lgi,jng

. O(N+1)
E[Vil i Vigis * " Viog_viok Vjrjo Vjaja * ** ijk—ljzk] — E : ng (U)

UESzk
J =i
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The orthogonal Weingarten function ng ) have three forms.

1. It is the pseudo-inverse element of G, o )(a) = N,

2.
2k k! f2A

(2k)! 4 GU(N)

wegd™M (o) = N 0).

A=k

O(N io: N—k m

m=0

where the coefficients a,,(0) have combinatorial interpretations.
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