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1 Introduction

We have already learnt about binary relations as basics of mathematics and com-
puter science. Especially, equivalence relations and orderings appear frequently.
However, it is harder to become familiar with binary relations than mappings
having known and used since we were junior high school students. Don’t you
feel difficult to prove properties of very essential notions such as equivalence
classes, supremum and infimum using notions of equivalence relations and or-
derings? In this lecture, we study some of basic properties of binary relations.
The author hope that readers will feel much closer to binary relations through
this lecture.

2 Basic Definitions and Properties

We start from defining binary relations.

Definition 2.1 A (binary) relation α from a set A to a set B, written
α : A ⇁ B, is a subset of Cartesian product A×B.

Thus, the set Rel(A,B) of relations from a set A to a set B is equal to the
power set ℘(A×B) of A×B.

0AB and ∇AB denote the empty relation and universal relation (or entire
Cartesian product) A×B, respectively.

For relations α, β : A ⇁ B, inclusion α ⊆ β is defined set theoretically,
that is,

α ⊆ β
def⇐⇒ ∀(a, b) ∈ A×B.((a, b) ∈ α ⇒ (a, b) ∈ β) .

The empty relation 0AB and the universal relation ∇AB are the greatest and
the least, respectively, in Rel(A,B) with respect to ⊆. The identity relation
idA : A ⇁ A on a set A is the set of diagonals of A×A, that is,

idA
def= {(a, a) ∈ A×A | a ∈ A} .

1 denotes a fixed singleton set {∗}. Then, id1 = ∇11 holds.
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Definition 2.2 For α : A ⇁ B and β : B ⇁ C, composition αβ : A ⇁ C of
α followed by β is defined as follows.

αβ
def= {(a, c) ∈ A× C | ∃b ∈ B.((a, b) ∈ α and (b, c) ∈ β)}

Then, we have the following proposition.

Proposition 2.3 For α, α′ : A ⇁ B, β, β′ : B ⇁ C, and γ : C ⇁ D, it holds
that

1. (αβ)γ = α(βγ)，

2. idAα = α = αidB，

3. 0XAα = 0XB，α0BY = 0AY，

4. α ⊆ α′ and β ⊆ β′ implies αβ ⊆ α′β′，

5. B 6= ∅ implies ∇AB∇BC = ∇AC．

Definition 2.4 For a family {αλ : A ⇁ B | λ ∈ Λ} of relations from A to B,
the union relation ∪λ∈Λαλ and the intersection relation ∩λ∈Λαλ are the
set theoretical union and intersection, respectively:

∪λ∈Λαλ
def= {(a, b) ∈ A×B | ∃λ ∈ Λ.((a, b) ∈ αλ)} ,

∩λ∈Λαλ
def= {(a, b) ∈ A×B | ∀λ ∈ Λ.((a, b) ∈ αλ)} .

Then, we have the following propositions.

Proposition 2.5 For α, βλ : A ⇁ B (λ ∈ Λ),

1. α ∩ (∪λ∈Λβλ) = ∪λ∈Λ(α ∩ βλ)，

2. α ∪ (∩λ∈Λβλ) = ∩λ∈Λ(α ∪ βλ)．

Proposition 2.6 For α : A ⇁ B，βλ : B ⇁ C (λ ∈ Λ), and γ : C ⇁ D,

1. α(∪λ∈Λβλ) = ∪λ∈Λ(αβλ)，(∪λ∈Λβλ)γ = ∪λ∈Λ(βλγ)，

2. α(∩λ∈Λβλ) ⊆ ∩λ∈Λ(αβλ)，(∩λ∈Λβλ)γ ⊆ ∩λ∈Λ(βλγ)．

Proposition 2.6 says that the composition is distributive over the union but isn’t
so over the intersection. Let’s consider counterexample.

Example 2.7 Consider the case Λ = {1, 2} and A = {a, b}. Let α, β1, β2 : A ⇁
A be

α = {(a, a), (a, b)}, β1 = {(a, a)}, β2 = {(b, a)} .

Then,
β1 ∩ β2 = 0AA
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and
αβ1 = {(a, a)} = αβ2

hold. Therefore

α(∩λ∈Λβλ) = α(β1 ∩ β2) = α0AA = 0AA = ∅
( {(a, a)} = αβ1 ∩ αβ2 = ∩λ∈Λ(αβλ) .

Definition 2.8 For α : A ⇁ B, the converse relation α] : B ⇁ A is defined
as follows.

α] def= {(b, a) ∈ B ×A | (a, b) ∈ α} .

Proposition 2.9 For α, α′, αλ : A ⇁ B (λ ∈ Λ), and β : B ⇁ C, the following
holds.

1. α]] = α，

2. (αβ)] = β]α]，

3. α ⊆ α′ implies α] ⊆ α′]，

4. (∪λ∈Λαλ)] = ∪λ∈Λα]
λ，

5. (∩λ∈Λαλ)] = ∩λ∈Λα]
λ，

6. 0]
AB = 0BA，∇]

AB = ∇BA，id]
A = idA．

The following properties are called Dedekind formulae.

Proposition 2.10 For α : A ⇁ B, β : B ⇁ C, and γ : A ⇁ C, it holds that

1. αβ ∩ γ ⊆ α(β ∩ α]γ)，

2. αβ ∩ γ ⊆ (α ∩ βγ])γ．

3 Mappings

Let’s recall a notion of mappings.

Definition 3.1 A mapping α : A → B is a relation satisfying the following:

For each a ∈ A, {b ∈ B | (a, b) ∈ α} is a singleton set.

Map(A,B) denotes the set of mappings from A to B. Clearly, ∇A1 is a unique
mapping from A to 1, that is, Map(A, 1) = {∇A1}.

The requirement for mappings is equivalent to the following two statement.

Univalency (a, b) ∈ α and (a, b′) ∈ α imply b = b′

Totality ∀a ∈ A.∃b ∈ B.(a, b) ∈ α
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Using composition relation, converse relation, and inclusion between rela-
tions, the notions of univalency and totality may be translated into point-free
style formulae.

Univalency α]α ⊆ idB

Totality idA ⊆ αα]

The following properties are proved in point-free style if we use the above for-
malisations of univalency and totality.

Proposition 3.2 For mappings f, h : A → B, g : B → C the following holds.

1. If f and g are mappings, then so is fg.

2. If f ⊆ h, then f = h.

Proof. 1. fg is univalent since

(fg)](fg) = g]f ]fg ⊆ g]idBg = g]g ⊆ idC .

Also, fg is total since

idA ⊆ ff ] = f idBf ] ⊆ fgg]f ] = (fg)(fg)] .

2. Suppose f ⊆ h, then f ] ⊆ h]. So we have

h = idAh ⊆ ff ]h ⊆ fh]h ⊆ f idB = f .

We only use totality of f and univalency of h in the proof of the second of
Proposition 3.2. Thus, the next is immediate.

Corollary 3.3 For total relation α : A ⇁ B and univalent relation β : A ⇁ B,
if α ⊆ β, then α and β are mappings satisfying α = β.

The next proposition shows that each relation may be decomposed to two
mappings.

Proposition 3.4 For a relation α : A ⇁ B, there exist mappings f : R → A,
g : R → B satisfying α = f ]g and ff ] ∩ gg] = idR.

Proof. Let R = α, ((a, b), a′) ∈ f ⇐⇒ a = a′, and ((a, b), b′) ∈ g ⇐⇒ b = b′,
then f and g are mappings satisfying

(a, b) ∈ f ]g
⇐⇒ ∃(a′, b′) ∈ α.(a, (a′, b′)) ∈ f ] and ((a′, b′), b) ∈ g
⇐⇒ ∃(a′, b′) ∈ α.(a = a′ and b′ = b)
⇐⇒ (a, b) ∈ α .
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So α = f ]g holds. By the definition of f and g,

((a, b), (a′, b′)) ∈ ff ] ∩ gg]

⇐⇒ ((a, b), (a′, b′)) ∈ ff ] and ((a, b), (a′, b′)) ∈ gg]

⇐⇒ a = a′ and b = b′

⇐⇒ (a, b) = (a′, b′)
⇐⇒ ((a, b), (a′, b′)) ∈ idR .

So ff ] ∩ gg] = idR holds.

As the notion of mappings, notions of surjections, injections, and bijections
may be formalised in point-free style using composition relations, converse re-
lations, and inclusion between relations.

A mapping f : A → B is

surjective ⇔ idB ⊆ f ]f，

injective ⇔ ff ] ⊆ idA，

bijective ⇔ idB ⊆ f ]f and ff ] ⊆ idA．

If we use the above formalisation of bijections, the following property which
must appear in each undergraduate text book of introduction to mathematics
is shown by simple calculus.

Proposition 3.5 A mapping f : A → B has the inverse function if and only if
f is bijective.

Proof. It is obvious that f has the inverse function if and only if f ] is a mapping.
Suppose that f is bijective, then it holds that

(f ])]f ] = ff ] ⊆ idA

by the injectivity of f . So f ] is univalent. Also, since f is surjective, it holds
that

idB ⊆ f ]f = f ](f ])] .

So f ] is total. Therefore, f ] is a mapping. Conversely, we suppose that f ] is a
mapping. Then, since f ] is univalent, it holds that

ff ] = (f ])]f ] ⊆ idA .

So f is injective. Since f ] is total, we have

idB ⊆ f ](f ])] = f ]f .

So f is surjective.

Though it is possible to show that f ] is bijective if so is f similarly, we omit
details.
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A mapping is decomposed to a surjection and a injection. Usually, given
f : A → B, if we take the image f(A) = {b ∈ B | f(a) = b} of A under f ,
essentially the same mapping f̂ : A → f(A) as f , i.e., f̂ is a mapping defined
by f̂(a) def= f(a), and the inclusion i : f(A) → B, then clearly f̂ is surjective, i

is injective, and also f = f̂ i holds.
In the usual construction, we may treat elements of sets without any inhibi-

tion. Here, we demonstrate the same construction in point-free style as far as
possible.

Proposition 3.6 For a mapping f : A → B, there exists an injection m : X →
B satisfying m]m = f ]f .

Proof. By Proposition 3.4, there exist m : X → B and g : X → 1 satisfying
f ]∇A1 = m]g and mm]∩gg] = idX for a relation f ]∇A1. Since ∇X1 is a unique
mapping from X to 1, g = ∇X1 holds. So, it holds that

mm] = mm] ∩∇XX = mm] ∩∇X1∇]
X1 = mm] ∩ gg] = idX .

Therefore m is injective. Since f ]∇A1 = m]∇X1 holds,

f ]∇A1∇1A = m]∇X1∇1A and f ]∇A1∇1X = m]∇X1∇1X ,

i.e.，
f ]∇AA = m]∇XA and f ]∇AX = m]∇XX .

So it holds that
f ]∇AAf = m]∇XAf

= m]∇XAf ]]

= m](f ]∇AX)]

= m](m]∇XX)]

= m]∇XXm .

Thus, using Dedekind formula introduced in Proposition 2.10, we have.

f ]f = f ]f ∩ f ]∇AAf
= f ]f ∩m]∇XXm
⊆ idB ∩m]∇XXm
⊆ m](m ∩∇XXm)
= m]m

Similarly, it is possible to prove m]m ⊆ f ]f .

The set X and injection m : X → B given in Proposition 3.6 corresponds to
the set f(A) and the inclusion i : F (A) → B. The next proposition shows a
construction of a surjection corresponds to f̂ .

Proposition 3.7 For a mapping f : A → B and an injection m : X → B, if
m]m = f ]f , then there exists a unique surjection g : A → X such that f = gm.
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Proof. Since fm] : A ⇁ X satisfies

idA = idAidA ⊆ ff ]ff ] = fm]mf ] = (fm])(fm])]

(fm])](fm]) = mf ]fm] = mm]mm] = idX idX = idX ,

fm] is a surjection. Also, (fm])m = ff ]f holds. By totality and univalency
of f , f = idAf ⊆ ff ]f and ff ]f ⊆ f idA = f hold. So we have ff ]f = f .
Therefore f = (fm])m. Letting g = fm], g is a surjection satisfying f = gm.
Assume that h : A → X is a surjection which satisfies f = hm, h = hidX =
hmm] = fm] = g since m is injective.

Proposition 3.7 shows that f̂ corresponds to fm].

Theorem 3.8 For a mapping f : A → B, there exist a surjection g : A → X
and injection m : X → B such that f = gm.

4 Membership Relations

We often deal with a relation from A to B as a mapping from A to ℘(B). Let
see carefully the reason why we may do so.

Definition 4.1 The membership relation 3A : ℘(A) ⇁ A of A is defined by

3A
def= {(S, a) ∈ ℘(A)×A | a ∈ S} .

Lemma 4.2 For mappings f, g : A → ℘(B), if f 3B= g 3B, then f = g.

Proof. For each a ∈ A, we show f(a) = g(a).

b ∈ f(a) ⇐⇒ ∃S ⊆ B.((a, S) ∈ f and b ∈ S)
⇐⇒ ∃S ⊆ B.((a, S) ∈ f and (S, b) ∈3B)
⇐⇒ (a, b) ∈ f 3B

⇐⇒ (a, b) ∈ g 3B

⇐⇒ ∃S ⊆ B.((a, S) ∈ g and (S, b) ∈3B)
⇐⇒ ∃S ⊆ B.((a, S) ∈ g and b ∈ S)
⇐⇒ b ∈ g(a) .

Lemma 4.3 For a relation α : A ⇁ B, there exists a unique mapping f : A →
℘(B) such that α = f 3B.

Proof. Define f : A → ℘(B) by

(a, S) ∈ f ⇐⇒ S = {b ∈ B | (a, b) ∈ α} .

Then, it is obvious that such a set S ⊆ B is uniquely determined for each a ∈ A.
Next, we show α = f 3B .

(a, b) ∈ f 3B

⇐⇒ ∃S ∈ ℘(B).((a, S) ∈ f and (S, b) ∈3B)
⇐⇒ ∃S ∈ ℘(B).((a, S) ∈ f and b ∈ S)
⇐⇒ S = {b′ ∈ B | (a, b′) ∈ α} and b ∈ S
⇐⇒ (a, b) ∈ α .
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Uniqueness of f is derived from Lemma 4.2.

Conversely, for a mapping f : A → ℘(B), we always have a relation f 3B : A ⇁
B. Thus we have the following theorem.

Theorem 4.4 Rel(A,B) ∼= Map(A,℘(B))

5 Orderings, Equivalence Relations

Orderings and equivalence relations are examples appearing frequently in math-
ematics. Let’s recall these notions.

Definition 5.1 A relation ρ : A ⇁ A is called a (partial) ordering on A if
it satisfies the following three conditions.

reflexive law ∀a ∈ A.((a, a) ∈ ρ)

transitive law (a, b) ∈ ρ and (b, c) ∈ ρ ⇒ (a, c) ∈ ρ

antisymmetric law (a, b) ∈ ρ and (b, a) ∈ ρ ⇒ a = b

An ordering ρ on A which satisfies

linear law ∀a, b ∈ A.((a, b) ∈ ρ or (b, a) ∈ ρ)

is called a total (or linear) ordering.

Definition 5.2 A reflexive and transitive relation ρ : A ⇁ A satisfying

symmetric law (a, b) ∈ ρ ⇒ (b, a) ∈ ρ

is called an equivalence relation.

Each ”law” which appeared above can be formalised in point-free style, that is,
a relation ρ : A ⇁ A satisfies

satisfies reflexive law ⇐⇒ idA ⊆ ρ，

satisfies transitive law ⇐⇒ ρρ ⊆ ρ，

satisfies antisymmetric law ⇐⇒ ρ ∩ ρ] ⊆ idA，

satisfies linear law ⇐⇒ ρ ∪ ρ] = ∇AA，

satisfies symmetric law ⇐⇒ ρ] ⊆ ρ．

So, orderings and equivalence relations on A is formalised as follows.

ρ is a ordering on A ⇐⇒ idA ⊆ ρ and ρρ ⊆ ρ and ρ ∩ ρ] ⊆ idA．

ρ is a total ordering
⇐⇒ idA ⊆ ρ and ρρ ⊆ ρ and ρ ∩ ρ] ⊆ idA and ρ ∪ ρ] = ∇AA．

ρ is an equivalence relation on A ⇐⇒ idA ⊆ ρ and ρρ ⊆ ρ and ρ] ⊆ ρ．
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6 Properties of Equivalence Relations

For a mapping f : A → B, if we consider a relation {(x, y) ∈ A × A | f(x) =
f(y)},

f(x) = f(y)
⇐⇒ ∃z ∈ B.((x, z) ∈ f and (y, z) ∈ f)
⇐⇒ ∃z ∈ B.((x, z) ∈ f and (z, y) ∈ f ])
⇐⇒ (x, y) ∈ ff ] .

So, we have ff ] = {(x, y) ∈ A × A | f(x) = f(y)}. This relation is a typical
example of equivalence relations. It is not very difficult to show that ff ] is an
equivalence relation. By the totality of f , reflexivity idA ⊆ ff ] is immediate.
By the univalency of f , it holds that

(ff ])(ff ]) = f(f ]f)f ] ⊆ f idBf ] = ff ] .

So, ff ] is transitive. Since (ff ])] = f ]]f ] = ff ] holds, ff ] is symmetric.

From the above discussion, we learn a construction of an equivalence relation
from a mapping. The next proposition shows the opposite direction.

Proposition 6.1 For an equivalence relation ρ : A ⇁ A on A, there exists a
mapping f : A → Y satisfying ff ] = ρ.

Proof. By Lemma 4.3, there exists a mapping f : A → ℘(A) such that ρ =
f 3A for an equivalence relation ρ. By the reflexivity of ρ and the univalency
of f , we have

ff ] ⊆ ff ]ρ = ff ]f 3A⊆ f 3A= ρ .

By Proposition 3.4, there exist mappings u and v satisfying ρ = u]v. Since

uf 3A = uρ (by f 3A= ρ)
⊆ vv]uρ (by totality of v)
= vρ]ρ (by u]v = ρ)
⊆ vρρ (by symmetricity of ρ)
⊆ vρ (by transitivity of ρ)
= vf 3A (by f 3A= ρ)

vf 3A = vρ (by f 3A= ρ)
⊆ uu]vρ (by totality of u)
= vρρ (by u]v = ρ)
⊆ vρ (by transitivity of ρ)
= vf 3A (by f 3A= ρ)

hold, we have uf 3A= vf 3A. By Lemma 4.2, uf = vf holds. So,

ρ = u]v
⊆ ff ]u]vff ] (by totality of f)
= ff ]u]uff ] (by vf = uf)
⊆ ff ]ff ] (by univalency of u)
⊆ ff ] (by univalency of f)
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holds. Therefore, we have ρ = ff ].

The mapping f : A → ℘(A) given in Proposition 6.1 determines the equiva-
lence class of a ∈ A with respect to ρ.

Proposition 6.2 For an equivalence relation ρ : A ⇁ A and a mapping f : A →
℘(A) satisfying ρ = ff ], the following holds.

1. a ∈ f(a),

2. (a, b) ∈ ρ ⇐⇒ f(a) = f(b),

3. f(a) 6= f(b) ⇒ f(a) ∩ f(b) = ∅.

Proof. 1. By the reflexivity of ρ,

(a, a) ∈ ρ ⇐⇒ (a, a) ∈ f 3A

⇐⇒ ∃S ⊆ A.((a, S) ∈ f and (S, a) ∈3A)
⇐⇒ ∃S ⊆ A.((a, S) ∈ f and a ∈ S)
⇐⇒ a ∈ f(a)

2. We have already shown at the beginning of this chapter.
3. By 2, f(a) 6= f(b) ⇐⇒ (a, b) 6∈ ρ holds. Assume that f(a)∩ f(b) 6= ∅. Then

∃c ∈ A.((a, c) ∈ f 3A and (b, c) ∈ f 3A)
⇐⇒ (a, b) ∈ (f 3A)(f 3A)] .

Since (f 3A)(f 3A)] = ρρ] ⊆ ρρ ⊆ ρ, (a, b) ∈ ρ. This is contradiction to
f(a) 6= f(b).

For an equivalence relation ρ : A ⇁ A, it is known that there exists natural
surjection called canonical surjection from A to the quotient set of A by ρ. Since
the canonical surjection often plays an important rôle in universal algebras, we
cite this briefly.

Proposition 6.3 For an equivalence relation ρ : A ⇁ A on A, there exists a
surjection p : A → Q such that pp] = ρ.

Proof. By Proposition 6.1, there exists a mapping f : A → ℘(A) satisfying
ff ] = ρ. Also by theorem 3.8, there exist a surjection p : A → Q and an
injection m : Q → B for f : A → ℘(A). Since m is injective, ff ] = (pm)(pm)] =
pmm]p] = pp].

Q and p : A → Q in Proposition 6.3 correspond to the quotient set of A by ρ
and the canonical surjection, respectively.
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7 Conclusion

We have studied basic definitions and properties of binary relations. The author
believe that we have studied on equivalence relations more carefully than usual.
Since more technical preparation is needed, we have left it at recalling the
definition of orderings.

Could you feel closer to binary relations? For people who wants to study
relations more, [3] is recommended. This book provides quite wide knowledge
from basics to applications in computer science.

We have seen point-free formalisations and proofs at some parts of this note.
[1] and [2] introduce a kind of categories called allegories. In these books we
can learn benefit and beauty of point-free relational calculus.

This note is based on what the author studied in his master course under
the instruction of Prof. Kawahara at Kyushu University.
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